Как сделать самодельный регулируемый блок питания
Содержание:
- Плюсы и минусы
- Где взять комплектующие
- Варианты БП для самостоятельного монтажа
- Виды и особенности блоков питания
- Переделка БП ATX в регулируемый или лабораторный блок питания
- Что такое трансформатор
- Как сделать блок питания?
- Зарядное из компьютерного блока питания
- Сборка и настройка ЛБП
- Лабораторный блок питания с регулировкой напряжения и ограничением по току
- Подготовка к переделке
- Видео ролик подключения вольтамперметра DSN-VC288
Плюсы и минусы
К плюсам можно отнести относительно небольшой вес устройства, довольно большой коэффициент полезного действия. Если сравнивать итоговую сумму, которую можно потратить приобретая комплектующие с заводским аналогом, то такой бп очень выгоден за счет маленькой стоимости.
Также стоит отметить в плюсах широкий интервал напряжения питания. Кроме этого, в блоке питания могут быть встроенные датчики блокирования, на случай если устройство вдруг перегреется.
Помимо плюсов у этого устройства есть и минусы. Самым главным является создание помех, которые потом уходят в окружающий мир. Это происходит во время преобразования импульсов в пониженное напряжение. После того, как начинают появляться помехи, возникает необходимость подавить помехи.
Где взять комплектующие
Все комплектующие можно приобрести в специализированных магазинах, однако не всегда есть возможность их посетить. Кроме того, цена на некоторые составляющие может быть завышена.
К счастью, все необходимые элементы, которые нужны для создания блока питания, можно достать в старых устройствах, лежащих в кладовых, на складах, или просто за
В качестве корпуса для лабораторного источника питания, собранного своими руками отлично подойдет старый, прочный корпус от советского регулятора паяльного инструмента. Если нет подобного корпуса, можно взять любой, подходящий по размерам. Предпочтение стоит отдавать алюминиевым корпусам.
В старом, ненужном телевизоре вполне реально найти нужный трансформатор, лучше делать отвод в 22 в.
После того, как диодный мост будет собран, сверху устанавливается электролитический конденсатор. Вольтамперметр можно заказать из Китая, либо купить в России, цена не сильно отличается. Если нет возможности или желания его использовать, можно ограничиться подстроечными резисторами.
Варианты БП для самостоятельного монтажа
Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.
Простой БП 0-30 В
Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.
Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.
Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.
Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.
В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.
Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.
Вольтметр можно использовать цифровой.
Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.
Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.
Мощный импульсный БП
Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.
Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:
-
Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
-
Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
-
Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.
Для размещения элементом схемы изготавливают печатную плату.
Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.
На Ардуино
Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.
«Умный» блок питания представлен на схеме.
Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.
Печатную плату можно сделать по образцу.
Внешний вид устройства и внутреннее расположение компонентов представлено на фото.
Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.
Виды и особенности блоков питания
Встречаются два типа блоков питания:
- Импульсный;
- Линейный.
Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.
Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.
Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Что такое трансформатор
Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:
- Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
- Сетевую обмоту (первичная). Запитывается от 220 Вольт.
- Вторичную обмотку (понижающую). Служит для подключения выпрямителя.
Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.
Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.
Как сделать блок питания?
У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.
Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.
Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.
Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.
Регулируемый – это прибор, у которого можно изменить выходное напряжение (допускается изменение в пределах от 3 до 12 вольт). Например, если мы хотим получить 7 или 10 вольт – нам нужно будет всего лишь повернуть ручку регулятора.
Нерегулируемый прибор – имеет фиксированное выходное напряжение, которое нельзя изменить. К примеру, блок питания «Электроника» Д2-27 нельзя регулировать, и он выдает на выходе всегда 12 вольт.
Самые интересные для радиолюбителей являются регулируемые блоки питания. Они позволяют запитать достаточно много устройств (самодельных либо промышленных), которым понадобится разное напряжение питания.
Фото самодельного блока питания можно найти в журналах для радиолюбителей либо в интернете.
Зарядное из компьютерного блока питания
Первым делом, о чем хочется сообщить, это то, что многие элементы в блоке находятся под опасным для жизни напряжением, если есть сомнения в правильности ваших действий – не рискуйте, ни своим здоровьем, ни работоспособностью вашего БП.
Для переделки подойдет практически любой блок питания ATX
Но стоить обратить внимание на то, что есть более геморройные блоки, а есть менее. Для выбора «удобного» для переделки блока необходимо убедиться в том, что в блоке установлен ШИМ контроллер TL494 или его аналог (KA7500B)
По сути, этот ШИМ использовался практически на всех старых блоках AT и ATX мощностью 200 – 300 Вт.
Одни из самых распространенных и дешевых блоков являются блоки Codegen 300X и Codegen 300XA. Вот на них мы и остановимся более подробно. К стати, блоки питания Codegen 200, 250, 300 Вт имеют практически одинаковую схему и отличаются лишь номиналом некоторых элементов, они отлично подходит для переделки в зарядное.
Зарядное из компьютерного блока питания Codegen 300XA
Переделка такого блока будет включать в себя несколько шагов. Разбираем блок питания.
Выпаиваем все провода, которые использовались для подключения. Оставляем лишь черный провод (минус) и желтый провод (шина +12 В). Зеленый провод (Power ON) просто обрезаем и подключаем свободный конец на минус. С помощью замыкания зеленого провода на минус мы добьемся автоматического старта блока при включении в сеть.
Далее необходимо подключить вентилятор охлаждения на шину (– 12 В). В принципе, это можно и не делать, но будет один неприятный момент при подключении АКБ к зарядке. Вентилятор изначально питается с шины +12 В, при подключении АКБ к зарядке на шине + 12 В появляется напряжение и включается вентилятор. Некоторым это может очень не понравиться, так, что рекомендуем подключить красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).
Проверяем работоспособность блока. Блок должен запуститься автоматически, а на выходе должно быть напряжение 12В.
Перед всеми дальнейшими манипуляциями желательно найти схему блока или подобрать наиболее близкую. Ниже изображена схема Codegen 300XA.
Находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.
Выпаиваем его и измеряем сопротивление, оно составило 39 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 39 кОм.
Запускаем блок питания. На выходе напряжение должно быть около 12 В.
Последним шагом станет поднятие напряжения до 14,2 В с помощью регулировки подстроечного резистора.
Подстроечный резистор лучше всего брать многооборотный, это даст легкую и точную настройку выходного напряжения.
Зарядное из компьютерного блока питания Codegen 300X
Манипуляции, по сути, будут такими же, добавятся лишь пара дополнительных шагов.
Отключаем все провода от блока. Оставляем только черный (минус) и желтый (шина +12 В). Зеленый (Power ON) обрезаем и подключаем свободный конец на минус. Далее подключаем питания вентилятора охлаждения на шину (– 12 В). Красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).
Тестируем работу. На выходе напряжение 12 В.
На схеме Codegen 300X находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.
Далее выпаиваем его и измеряем сопротивление, у нашего блока оно составило 38 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 38 кОм.
Важно найти стабилитрон ZD1 и удалить его из платы. На схеме он зачеркнут
Если его не выпаять, мы не сможем поднять напряжение выше 13 В, т.к. блок уйдет в защиту.
Запускаем блок питания. На выходе напряжение должно быть почти 12 В.
Финишным этапом будет поднятие напряжения до 14,0 В с помощью регулировки подстроечного резистора. Выше 14,0 В напряжение не стоит подымать на этом БП без дальнейших изменений схемы, т.к. уже при напряжении 14,2 В будут наблюдаться проблемы с запуском блока. А 14,0 В это вполне достаточно для зарядки автомобильного АКБ.
Стоит отметить, что при неправильном подключении АКБ зарядное из блока питания ATX выходит из строя моментально, важно оснащать его хоть самыми простыми защитными схемами от переполюсовки на реле или полевику. Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда
Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда.
comments powered by HyperComments
Сборка и настройка ЛБП
Рекомендуем строить этот лабораторный БП в следующем порядке:
- Сборка и проверка модуля с мостовым выпрямителем, фильтрацией и реле, подключение к трансформатору и активация реле от независимого источника для проверки выходных напряжений.
- Исполнение модуля переключения обмоток и контроля охлаждения радиаторов. Запуск этого модуля облегчит настройку будущего источника питания. Для этого понадобится другой источник питания для подачи регулируемого напряжения на вход системы, отвечающей за управление реле.
- Температурная часть схемы может быть настроена путем моделирования температуры. Для этой цели использовалась тепловая пушка, которая аккуратно нагревала радиатор с датчиком (BD135). Температура измерялась с помощью датчика, включенного в мультиметр (в то время не было готовых точных измерителей температуры). В обоих случаях настройка сводится к подбору PR201 и PR202 или PR301 и PR302 соответственно.
- Затем запускаем блок питания, регулируя RV1 таким образом, чтобы получить 0 В на выходе, что полезно при настройке ограничения тока. Само ограничение зависит от значений резисторов R18, R7, R17.
- Регулирование А/В индикаторов сводится к настройке опорных напряжений между контактами 35 и 36 микросхем ICL. В измерителях напряжения и тока использовался внешний эталонный источник. В случае с измерителями температуры такая точность не нужна, а отображение с десятичным знаком все же несколько преувеличено. Передача показаний температуры осуществляется одним выпрямительным диодом (на схеме их три). Это связано с дизайном печатной платы. На ней есть две перемычки.
- Непосредственно на выходных клеммах к вольтметру подключен делитель напряжения и резистор 0,01 Ом / 5 Вт, на котором падение напряжения используется для измерения тока нагрузки.
Дополнительным элементом источников питания является схема, которая позволяет включать только один источник питания без необходимости использования второго канала, несмотря на тот факт, что вспомогательный трансформатор питает оба канала источника питания сразу. На той же плате размещена система для включения и выключения блока питания с помощью одной слаботочной кнопки (для каждого канала блока питания).
Лабораторный блок питания с регулировкой напряжения и ограничением по току
Ну а теперь попробуем из вышеприведенных узлов собрать блок питания, при помощи которого можно регулировать выходное напряжение и устанавливать ограничение по току. При этом и напряжение, и установленный ток будут стабилизированными.
Сетевое напряжение понижается до 25 В силовым трансформатором Тr1, выпрямляется диодным мостом VD1-VD4, сглаживается конденсатором С1 и поступает на регулируемый стабилизатор, собранный на микросхеме DD1 и транзисторе Т1. Регулировка производится переменным резистором P1.
Далее напряжение установленной нами величины подается на регулятор-стабилизатор тока (микросхема DD2, транзистор Т2). Регулировка величины тока производится переменным резистором P2. Более подробно оба эти узла описаны выше. Поскольку микросхема LM358 не может работать при напряжении питания ниже 7 В, она и генератор опорной частоты (стабилитрон D1) подключены непосредственно к выходу выпрямителя.
В конструкции можно использовать любой сетевой трансформатор соответствующей мощности со вторичной обмоткой на 25-28 В. Диоды VD1-VD4 можно заменить на любые выпрямительные, рассчитанные на ток не менее 10 А и выдерживающие обратное напряжение не менее 40 В. Их, как и силовые транзисторы T1, T2, необходимо установить на радиаторы.
Схема на транзисторах
Несмотря на богатый выбор микросхем самого различного назначения блоки питания на транзисторах не теряют популярности. Попробуем и мы построить лабораторный БП на этих полупроводниковых приборах.
В этой схеме регулятор-стабилизатор напряжения собран на транзисторах T1, T2. В качестве генератора опорного напряжения используется регулируемый стабилитрон D1. Регулировать напряжение в диапазоне 2.5…20 В можно переменным резистором P1.
Регулятор тока собран на транзисторах Т3, Т4 и стабилитроне D2, исполняющем роль источника опорного напряжения. В качестве токоизмерительного элемента используется сам полевой транзистор T4. Если падение напряжения на нем превысит определенный порог, транзистор Т3 начнет открываться и шунтировать Т4, заставляя его закрываться и ограничивать ток через нагрузку. Регулировка порога ограничения производится переменным резистором P2.
В схеме вместо диодной сборки KBPC2510 можно использовать отдельные диоды, выдерживающие ток 10 А и обратное напряжение не менее 30 В. Подойдут, к примеру, Д245, Д242. На месте Т1 может работать КТ805 или КТ819, Т2 заменяем на КТ867А. КТ315 можно заменить на КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. Отечественный аналог TL431 — КР142ЕН19А. Диодный мост, Т1, Т2 и Т4 нужно установить на радиаторы.
Подготовка к переделке
Перед тем, как приступить к работе над созданием лабораторного агрегата, необходимо определиться, какое напряжение и ток вам нужно от него получить, и выбрать подходящий блок питания от компьютера с контроллером TL494 или аналогом.
Это устройство будет иметь защиту от короткого замыкания, перегрева и перегрузки. Это позволит получать плавно регулируемое напряжение от нуля до 25 В, при токе до 8-10 А.
Подготовка агрегата к модификации заключается в отключении вентилятора, выходных электролитических конденсаторов на линиях +12, +5, + 3,3 В и ненужных жил общей разводки. Карта должна иметь желтый, черный, зеленый и сетевой провода.
Какие детали нужно докупить
Чтобы модифицировать силовой модуль вашего компьютера, вам необходимо приобрести некоторые детали и устройства. Радиолюбители могут оказаться в домашней лаборатории.
Электролитические конденсаторы:
- 22 мкФ / 16 В;
- количество остальных элементов и их мощность такие же, как у деталей, свариваемых в процессе подготовки, но они должны выдерживать напряжение не менее 35-40 В.
Резисторы:
- переменная — 22 кОм и 330 Ом;
- постоянная (кОм) — 47, 15, 10, 1,2 и 3 шт. 2.7.
Устройства:
- вольтметр;
- амперметр — желательно с внутренним шунтом.
Схема доработки компьютерного БП
Для начала нужно удалить все ненужные предметы из обвязки TL494. Чтобы не резать рельсы и не искать детали, которые нужно снимать, можно сделать проще: выпарить и приподнять ножки 1-4 и 13-16 микросхемы.
Капитальный ремонт осуществляется навесным монтажом по схеме:
- Между общим проводом и выводами 1, 2 и 4 контроллера припаяны резисторы 2,7, 2,7 и 1,2 кОм соответственно.
- 2-й и 3-й контакты TL494 подключены через резистор 47 кОм и конденсатор 0,01 мкФ (он находится на плате).
- Между первой ногой и шиной +12 В установлен регулятор на 22 кОм — он будет изменять напряжение на выходе блока питания. Туда же припаян положительный провод вольтметра.
- Пятнадцатый вывод подключен к центральному выводу переменного резистора 330 Ом. Он будет регулировать ток.
- один из его концов идет «в минус», а второй проходит через резистор 10 кОм на выводах 13 и 14, спаянных между собой.
- шестнадцатая ветвь микросхемы подключена к «минусу» через амперметр».
- 14-й вывод подключен ко 2-й и 4-й ногам TL494 через резистор 2,7 кОм и параллельный конденсатор 22 мкФ / 16 В и сопротивление 15 кОм соответственно.
- Устройства подключаются к плате кабелем длиной 10-20 см.
- Припаиваются электролитические конденсаторы на 35-40В.
- Зеленый провод соединен переключателем с «минусом» платы.
Напряжение
После этих изменений на линиях +12 и +5 В напряжение будет установлено на + 25-30 и +10 В. Это можно проверить с помощью тестера.
Далее устанавливается вентилятор. Поскольку он подключен к линии 10 В, это приведет к небольшому снижению скорости вращения.
Источники
- https://Zapitka.ru/masterskaya/peredelka-kompyuternogo-bloka-pitaniya-v-laboratornyy
- https://datagor.ru/practice/power/2246-peredelka-bloka-at-v-reguliruemyy-bolk-pitaniya-0-30v-0-11a.html
- https://SdelaySam-SvoimiRukami.ru/3871-laboratornyy-istochnik-pitaniya-iz-bp-kompyutera.html
- https://Acums.ru/bespereboyniki-i-bloki-pitaniya/skhemy-peredelki-v-laboratorniy-ili-reguliruemiy-v-zaryadnoe-ustroystvo
- https://CleverDIY.ru/kak-samomu-sdelat-blok-pitaniya-iz-kompyuternogo-bp
- https://radioskot.ru/publ/bp/laboratornyj_bp_s_zashhitoj_iz_obychnogo_kompjuternogo/7-1-0-1063
Видео ролик подключения вольтамперметра DSN-VC288
на 100В и 10А (подробное описание дам в отдельной статье):
Инструменты, которые пригодятся при изготовлении нашего прибора:
1. Паяльник. 2. Отвертки. 3. Сверлильный станок или дрель. 4. Сверла. 5. Напильник или надфиль. 5. Наждачная шкурка. 6. Канцелярский нож. 7. Гаечные ключи. 8. Измерительный инструмент, как минимум линейка. 9. Начертательный инструмент, карандаш. 10. Кернер. 11. Пассатижи или плоскогубцы. 12. Отрезная машинка (болгарка) с отрезным кругом и шлифовальным.
Нужные Расходные материалы:
1. Припой. 2. Паяльная кислота. 3. Болты и гайки. 4. Монтажные провода. 5. Повышающий преобразователь напряжения. 6. Вольтамперметр 100В, 10А. 7. Вилочки, разъемчики и прочая мелочь. 8. Выключатель. 9. Переменный резистор. 10. Термоусадочные трубки.
Порядок изготовления регулируемого блока питания:
1. Найти старый, рабочий компьютерный блок питания. 2. Вскрыть, основательно, но аккуратно почистить от накопившейся пыли и грязи. 3. Выпаять из связки лишние провода, оставить черный минус питания, желтый 12В плюс, оранжевый 3.3В плюс, красный 5В плюс, и зеленый для включения блока питания. 4. На лицевой панели блока питания высверлить и развернуть напильником отверстия для монтажа приборов контроля, ручек управления и разъемов снятия напряжения с нашего прибора. 5. Выпаять из повышающего преобразователя напряжения подстроечный резистор, на его место впаять переменный резистор 10 ком. 6. Провести пайку проводов блока питания, подробно показано в видео ролике, не пугайтесь, все очень просто, главная проблема не обжечь пальцы паяльником :-). 7. На лицевой панели разместить и закрепить вольтамперметр, ручку управления, выключатель и разъемы снятия напряжения. 8. Подключить подготовленные провода к вольтамперметру, ручке управления, выключателю и разъемам снятия напряжения. 9. Подключенный через монтажные провода повышающий преобразователь напряжения разместить и зафиксировать в нашем блоке питания. Штатное место показано в видеоролике. 10. Собрать корпус получившегося блока питания. 11. Подключить блок питания к сети 220В. 12. Щелкнуть тумблером включения прибора. 13. На вольтамперметре должно высветится напряжение. 14. Провести настройку и тестирование регулируемого блока питания под нагрузкой.
Технический анализ:
Плюсы: 1. бюджетные затраты на комплектующие конструкции. 2. достаточная компактность. 3. Простота изготовления. 4. Простота эксплуатации.Минусы: 1. Недостаточная точность прибора, от 10 мА. 2. Напряжение регулируется от 12В. 3.3 и 5В фиксированное напряжение. Но над этим работаем.