Что такое модуль упругости бетона?
Содержание:
- Классификация
- Как определяется модуль упругости бетона В20
- Нормативные показатели
- От чего зависит величина?
- Что такое расчетное сопротивление?
- Модуль упругости бетона (Еб): способы определения значения
- Расчет модуля упругости в лабораторных условиях
- Этапы изменения структуры
- Модуль деформаций бетона
- Понятие модуля упругости
- Основное понятие
- 8.5.3. Модуль упругости и деформации бетона при
- виды, классификация. От чего зависит
- Расчетные значения
Классификация
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Таблица модулей упругости бетона с учётом СНИП 2.03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация
При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция
Модуль упругости — от чего он зависит
Бетонные арки. Фото
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
Примечание. Каким бы ни был модуль упругости, в любом случае сталь будет крепче, нежели бетон, поэтому, наличие армирующего каркаса значительно увеличивает такие показатели. Плотность армирования и сечение прута определяется по ГОСТ 24452-80.
Как определяется модуль упругости бетона В20
Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.
Диаграмма модуля упругости бетона в20
В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.
Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:
- значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
- приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.
Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.
Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.
И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.
Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.
Нормативные показатели
Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.
Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.
Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.
От чего зависит величина?
На величину данного показателя значительно влияет наполнитель в материала. Упругость раствора зависит от множества факторов
Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора
Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень
Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители. Учитывают не только интенсивность нагрузок, но и частоту
Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C). Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный). Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.
Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.
Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций. Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.
Посмотреть «ГОСТ 24452-80» или
Что такое расчетное сопротивление?
Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.
Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:
- 1,3 – для максимальных возможных величин по несущей способности;
- 1 – для максимальных значений по пригодности к эксплуатации.
Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:
- 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
- 1,3 – для максимальных значений несущей способности на осевое растяжение;
- 1 – для максимальных величин по пригодности к эксплуатации.
Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.
Как получить расчетное сопротивление?
Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:
Rb=Rbn/γb,
где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.
Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:
Rbt=Rbtn/γbt,
где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.
Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:
- для непродолжительных статических нагрузок 1;
- для длительных статических нагрузок 0,9;
- элементы, заливаемые вертикально 0,9;
- коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.
Модуль упругости бетона (Еб): способы определения значения
Порядок определения Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.
Механическое испытание
При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.
ФОТО: nilstroi.ruДля проведения испытания требуется специальное оборудование
Материалы и инструменты
Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.
Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.
ФОТО: beton-house.comОбразец помещается под пресс
Схема испытания образцов
Испытания выполняются в следующей последовательности:
- Образцы подготавливаются и с индикаторами помещаются под пресс, добиваясь совмещения осей образца и центра плиты. Назначают разрушающую нагрузку в т/м2. Величина зависит от марочной прочности бетона.
- Производят ступенчатое увеличение нагрузки с шагом 10 % от разрушающей и интервалом 4-5 минут.
- Доводят значение до 40-45 % от максимального. При отсутствии дополнительных требований приборы снимают, а дальнейшее нагружение выполняют с постоянной скоростью.
- Результаты для каждого образца обрабатывают, когда нагрузка составляет 30 % от разрушающей. Данные отображаются в журнале испытаний.
По проведенным исследованиям определяют начальный модуль упругости Еб. Нормативные значения для каждого класса содержатся в таблицах со строительными нормами и маркировке изделия. Для В15, В20, В25, В30, полученного в условиях естественного твердения, коэффициент равен 23, 27, 30, 32,5 МПа×10-3 соответственно, в условиях термической обработки – 25, 24,5, 27, 29.
ФОТО: studfile.netНагрузка повышается ступенчато
Неразрушающий ультразвуковой способ
Механический способ предполагает выемку образца из уже готовой конструкции. Это не всегда удобно и сопряжено с рядом трудностей. Ультразвуковой способ позволяет обойтись без локального разрушения. В условиях повышенной влажности погрешность составляет 15 -75 % из-за более высокой скорости распространения ультразвуковых волн в водной среде. Существует метод, позволяющий найти значение при различной влажности материала. Испытания проводятся на образцах, имеющих различную водонасыщенность.
Для нахождения нормативных и расчётных значений используют корректирующие коэффициенты, учитывая соответствующие значения. Методика приведена в СП 63.13330.2012.
Watch this video on YouTube
Расчет модуля упругости в лабораторных условиях
Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца
Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.
При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.
Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.
- Строитель с 20-летним стажем
- Эксперт завода «Молодой Ударник»
В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.
Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.
Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.
Этапы изменения структуры
При строительстве необходимо учитывать деформацию от приложенной нагрузки. В процессе эксплуатации бетонная структура деформируется в два этапа:
- Первый этап — краткосрочное изменение структуры. На этой стадии бетон сохраняет свою целостность и может восстанавливать исходное состояние. При этом во время растяжения, сжатия и изгибания возникает упругая деформация без необратимых разрушений.
- Второй этап — разрушения необратимого типа, которые происходят в результате внезапной и сильной нагрузки. Во время пластичной деформации появляются трещины, вследствие которых начинается постепенное разрушение бетонных конструкций.
Помимо деформации от приложенной нагрузки существует такое понятие, как коэффициент упругости. Такой показатель просто необходим для людей, занимающихся расчетом прочности бетонных зданий.
Модуль деформаций бетона
Начальный модуль упругости бетона при сжатии соответствует лишь упругим деформациям, возникающим при мгновенном загружении или при напряжениях . Он определяется в соответствии с законом Гука как тангенс угла наклона прямой упругих деформаций к оси абсцисс (рис. 1.11), т.е.
где р = 1 МПа — масштабно-размерный коэффициент.
Обычно определяется из специальных опытов на призмах при низком уровне напряжений (), когда бетон можно рассматривать как упругий материал.
При действии на бетон нагрузки, при которой , хотя бы в течение нескольких минут, в связи с развитием пластических деформаций (включая ползучесть) модуль полных деформаций бетона становится величиной переменной.
Для расчёта железобетонных конструкций пользуются средним модулем деформаций или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей, проведённой через начало координат и точку на кривой с заданным напряжением, к оси абсцисс, т.е.
Начальный модуль упругости бетона при растяжении по абсолютной величине принимается равным , то есть , а
где vt = 0,15 — значение коэффициента упругопластичности бетона при растяжении в момент, предшествующий разрушению.
Значения модуля сдвига бетона G принимают по установленной в теории упругости зависимости
Подставив в неё начальный коэффициент поперечной деформации бетона ν=0,2, получим .
ЛЕКЦИЯ 3
Арматура для железобетонных конструкций
- Назначение арматуры и требования к ней
2. Виды арматуры
3. Физико-механические свойства арматурных сталей
4. Классификация арматуры по основным характеристикам. Сортамент арматуры
5. Сварные арматурные изделия
6. Соединения арматуры
1. Назначение арматуры и требования к ней
Под арматурой понимают отдельные стержни или целые каркасы, которые располагаются в массе бетона в соответствии со статической схемой работы конструкции.
Арматура в железобетонных конструкциях используется преимущественно для восприятия растягивающих усилий. Но иногда арматуру применяют и для усиления сжатого бетона (например, в колоннах), а также для восприятия температурных и усадочных напряжений.
Арматура для железобетонных конструкций должна удовлетворять следующим требованиям:
под нагрузкой надёжно работать совместно с бетоном (за счёт сцепления) на всех стадиях службы конструкции;
использоваться до предела текучести или предела прочности при исчерпании конструкцией несущей способности.
2. Виды арматуры
Многообразие видов железобетонных конструкций определяет необходимость применения широкой номенклатуры арматурных сталей.
Для изготовления арматуры используют конструкционные стали обычно с содержанием углерода не более 0,65%, так как стали с более высоким содержанием углерода плохо свариваются.
Арматура классифицируется по функциональному назначению и способу изготовления по четырём признакам.
1. По технологии изготовления арматуру делят на: стержневую горячекатаную, термомеханически упрочненную и механически упрочненную в холодном состоянии (холоднодеформированную).
2. По форме наружной поверхности арматура бывает гладкая и периодического профиля.
3. По способу применения: арматура, которую укладывают в конструкцию без предварительного напряжения, называется ненапрягаемой, арматура, которую при изготовлении конструкции предварительно натягивают — напрягаемой.
4. Арматура, устанавливаемая в железобетонных конструкциях по расчёту, называется рабочей. Площадь её поперечного сечения определяется расчётом элементов конструкций на различные нагрузки и воздействия. Её главное назначение — восприятие растягивающих усилий в сечениях. Поэтому она располагается в растянутой зоне вдоль линии действия этих усилий, т. е. перпендикулярно к возможному направлению трещин.
Арматура, устанавливаемая по конструктивным или технологическим соображениям, называется монтажной или распределительной (в плитах). Она обеспечивает проектное положение рабочей арматуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчётом усилия от усадки бетона, изменения температуры конструкции и т. п. Она может также выполнять роль рабочей при транспортировании и монтаже конструкции.
Понятие модуля упругости
Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.
Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.
С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.
В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.
В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.
Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.
Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:
где E — модуль упругости (Па);
εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l).
Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.
График зависимости деформаций от напряжений при постепенном загружении
Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:
где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).
Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10 -3 .
Основное понятие
Важным параметром при выборе бетона является его упругость, которая показывает способность застывшей массы оставаться в целостности даже под воздействием деформации. Такие данные нужны проектировщикам для того, чтобы возводить прочные и долговечные конструкции.
Безусловно, главным достоинством материала является его твердость. Но из-за ползучести затвердевшая масса в процессе эксплуатации может деформироваться. Все это может происходить из-за воздействия нагрузки, если ее значение превысит допустимые нормы. Поэтому следует учитывать величину приложенной нагрузки и значение коэффициента ползучести, из-за которых структура затвердевшего изделия постепенно меняется.
8.5.3. Модуль упругости и деформации бетона при
КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ
Деформации бетона при приложении нагрузки зависят от его состава, свойств составляющих материалов и вида напряженного состояния. Диаграмма сжатия бетона имеет криволинейное очертание, причем кривизна увеличивается с ростом напряжений (рис. 6.4).
С увеличением прочности бетона уменьшается его деформация и кривизна диаграммы . Низкопрочные бетоны имеют даже нисходящую ветвь диаграммы сжатия. Однако на этом участке сплошность материала уже нарушена, в нем возникают микроскопические трещины, отслоение отдельных частей. В железобетонных конструкциях арматура связывает отдельные части бетона в единое целое и для частных случаев расчета конструкций необходимо учитывать нисходящую ветвь диаграммы сжатия бетона.
На характер нарастания деформаций под действием нагрузки влияют также скорость ее приложения, размеры образца, температурно-влажностное состояние бетона и окружающей среды и другие факторы. Деформация бетона включает упругую, пластическуюи псевдопластическуючасти (рис. 6.4):
Соотношение между ними зависит от состава бетона, использованных материалов и других факторов. Величина пластической и псевдопластической частей возрастает с увеличением длительности нагрузки, понижением прочности бетона, увеличением водоцементного отношения, при применении слабых заполнителей.
О деформативных свойствах бетона при приложении нагрузки судят по его модулю деформации, т. е. по отношению напряжения к относительной реформации, вызываемой его действием. Чем выше модуль деформации, тем менее деформативен материал. Поскольку диаграмма сжатия бетона криволинейна, то его модуль деформации зависит от значений относительных напряжений, постепенно понижаясь с их увеличением (рис.6.5), причем тем больше, чем ниже марка бетона. Обычно определяют либо начальный модуль деформации бетона Ео, когда преобладают упругие деформации, либо модуль деформации при определенном значении, например при= 0,5.
На практике используют эмпирические зависимости модуля деформации от различных факторов. Для расчета железобетонных конструкций важна зависимость модуля деформации при можно определить по формуле:
,
где R– прочность бетона.
В действительности модуль деформации может заметно отличаться от средних значений. В табл. 6.2 приведены значения модуля деформации при сжатии некоторых видов бетона, показывающие большое влияние на него технологических факторов.
Важное значение для расчета конструкций и оценки их поведения под нагрузкой имеют величины предельных деформаций, при которых начинается разрушение бетона, По опытным данным, предельная сжимаемость бетона изменяется в пределах 0.0015…0,003, увеличиваясь при повышении прочности бетона. Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними
Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними.
Предельная растяжимость бетона составляет 0,0001…0,0015, т.е. примерно в 15…20 раз меньше его предельной сжимаемости.
Предельная растяжимость повышается при введении в бетон пластифицирующих добавок, использовании белитовых цементов, уменьшении крупности заполнителей или при применении заполнителей с высокими деформативными свойствами и сцеплением с цементным камнем.
studfiles.net
виды, классификация. От чего зависит
Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.
Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.
Испытание на растяжение
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60 Тяжёлые Естественный цикл затвердевания — — — 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40 Тепловая обработка при атмосферном давлении — — — — 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36 Автоклавная обработка — — — — 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30 Мелкозернистые А-группа (естественное отвердение) — — — — 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5 — — — — Тепловая обработка при атмосферном давлении — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5 — — — — Б-группа (естественное отвердение) — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 — — — — — — Теплообработка при автоклавном давлении — — — — 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5 В-группа автоклавного отвердения — — — — — — — — — 16,5 18 19,5 21 21 22 23 24 24,5 25 Лёгкие и горизонтальные — средняя плотность D 800 — — — 4 4,5 5 5,5 — — — — — — — — — — — — 1000 — — — 5 5,5 6,3 7,2 8 8,4 — — — — — — — — — — 1200 — — — 6 6,7 7,6 8,7 9,5 10 10,5 — — — — — — — — — 1400 — — — 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5 — — — — — — 1600 — — — — 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18 — — — — — 1800 — — — — — 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21 — — — — 2000 — — — — — — 14,5 16 17 18 19,5 21 22 23 23,5 — — — — Ячеистые, автоклавное твердение, плотность D 500 1,1 1,4 — — — — — — — — — — — — — — — — — 600 1,4 1,7 1,8 2,1 — — — — — — — — — — — — — — — 700 — 1,9 2,2 2,5 2,9 — — — — — — — — — — — — — — 800 — — — 2,9 3,4 4 — — — — — — — — — — — — — 900 — — — — 3,8 4,5 5,5 — — — — — — — — — — — — 1000 — — — — — 6 7 — — — — — — — — — — — — 1100 — — — — — 6,8 7,9 8,3 8,6 — — — — — — — — — — 1200 — — — — — — 8,4 8,8 9,3 — — — — — — — — — — Таблица модулей упругости бетона с учётом СНИП 2.03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация
При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция
Модуль упругости — от чего он зависит
Бетонные арки. Фото
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Автоклавная обработка
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (
Расчетные значения
Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.
В зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.
Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.
Таблица 1.
Таблица 2.