Меднение нержавеющей стали

Содержание:

Основные методики меднения

Покрытие медью может осуществляться двумя способами — химическим и гальваническим. Для работы проще всего применять медный купорос, причем он подходит для выполнения обеих методик. В первом случае медь из купороса будет осаждаться на стальном изделии в ходе химической реакции, а во втором — под действием электрического тока.

В растворе электролитов

Гальваническая методика предполагает погружение в раствор электролитов, потому не подходит для габаритных предметов. Частицы меди во время процесса отсоединяются от анода и перемещаются к катоду. В результате действия электроэнергии меднение происходит довольно быстро. Заранее нужно правильно подготовить стальную поверхность — очистить и обезжирить ее.

Покрытие медью методом гальванизации

Без раствора электролитов

Основой химического меднения является движение медных частиц вследствие разницы в электроотрицательности со сталью. Готовое покрытие будет иметь меньшую толщину, нежели при гальванической методике, зато наносится проще, без лишних затрат. Кроме того, методика подходит и для обработки пластика, керамики, стекла.

Для работы нужно положить предмет в раствор купороса или нанести его на поверхность кисточкой. Медь «прилипает» к стали даже при условии некачественной подготовки основания, хотя результат будет не столь долговечным.

Раствор меднения для химической металлизации

В этой статье я расскажу вам как правильно приготовить раствор химического меднения, который является одним из этапов металлизации отверстий в печатных платах.

Приготовление раствора химической металлизации

Для приготовления раствора потребуются недорогие реактивы. Их можно купить в интернет магазинах, которых сейчас стало много и они работают с частными лицами. Трудностей с приобретением возникнуть не должно, было бы желание.

Порядок смешивания реактивов

1. Взвешиваем 30 гр. — медного купороса и 4 гр. — хлористого никеля. Наливаем в емкость 0,4 литра дистиллированной воды и растворяем эти реактивы в ней.

2. Взвешиваем 50 гр. — едкого натра, 20 гр. — кальцинированной соды и 85 гр. — трилона Б.

3. Наливаем в другую емкость 0,4 литра воды и растворяем реактивы в следующей последовательности.

Сначала едкий натр, затем кальцинированная сода и последним трилон Б.

4. Смешиваем эти растворы путем вливания раствора медного купороса с никелем, в раствор с трилоном Б, содой и едким натром. Хорошо перемешиваем и доводим объем раствора водой до 1 литра. Даем постоять 5..10 минут, если будет небольшой осадок, то фильтруем раствор.

5. Взвешиваем 1 гр. калия железосинеродистого (красная кровяная соль), растворяем его в 100 мл. дистиллированной воды. Затем берем шприцем 10 кубиков этого раствора — это будет 0,1 гр. этого реактива и добавляем его в только что приготовленный раствор раствора хим. меднения.

6. Взвешиваем 1 гр. калия роданистого и растворяем его в 100 мл. дистиллированный воды. Затем берем шприцем 0,3 кубика этого раствора — это будет 0,003 гр. и также добавляем его к основному раствору.

Калий железосинеродистый и калий раданистый являются ядовитыми веществами. При работе с ними соблюдайте элементарную технику безопасности. Не нюхайте, не пробуйте на вкус и т.п. При размешивании раствора, работайте в резиновых перчатках!!!

7. Хорошо перемешиваем раствор хим. меднения, теперь он готов к применению.

Хранение раствора и добавление формалина

В таком состоянии, то есть без формалина, раствор хранится очень долго, можно сразу размешать раствор на 5 литров, слить его в канистру и пользоваться им отливая нужное количество для меднения, добавляя в него формалин.

Для примера покажу как это делается.

Берем 20 мл. раствора химического меднения. По рецепту смотрим, что на 1 литр раствора нужно добавить 20 мл. формалина, произведем небольшой расчет.

Посчитаем сколько нужно формалина на 1 мл. раствора химического меднения.

20/1000 = 0,02 мл.

Так как мы взяли 20 мл. раствора хим. меднения, то..

20*0,02 = 0,4 мл. (0,4 кубика в шприце) формалина нужно добавить.

После добавления формалина, накрываем емкость крышкой. Накрываем что бы не нюхать запах формалина, берегите свое здоровье (формалин является канцерогеном!)

Данная статья опубликована на сайте . Постоянная ссылка на эту статью находится по этому адресу

Читайте статьи на сайте первоисточнике, не поддерживайте воров.

Тестирование раствора химического меднения

Чтобы протестировать как работает раствор химического меднения, берем активированный активатором диэлектрик (как активировать отверстия в печатных платах, читайте в этой статье) и опускаем в емкость. Буквально на глазах текстолит начинает темнеть и покрываться химической медью.

Процесс химического меднения должен длиться от 15 до 30 минут, и это время зависит от результата и качества покрытия, за которым вы должны следить. В процессе меднения идет газовыделение, плату нужно постоянно покачивать и переворачивать для равномерного распределения раствора по поверхности.

Прошло 20 минут, результат работы раствора на лицо, весь диэлектрик, включая отверстия, покрылся тонким 1 мкм. слоем меди и он готов к дальнейшему этапу — гальванике, этот этап подробно описан в этой статье.

Не фольгированный текстолит был взят для примера, некоторые подумают, таким образом можно не покупать фольгированный текстолит, а наращивать медь на голый диэлектрик и делать таким образом платы. Сразу хочу «обломать» вас, что бы наращивать медь на диэлектрик, нужно хорошо подготавливать поверхность, что в домашних условиях реализовать очень трудно. Так что не мучайтесь и делайте платы обычным способом, то есть, активируйте фольгированный текстолит.

Емкость раствора по меди

В заключении еще хотел добавить, расход этого раствора химического меднения берем из расчета 50 мл. раствора на 1 дм.кв. печатной платы. То есть 50 мл. раствора хватит омеднить двухстороннюю плату размером 10*10 см.

Раствор после добавления формалина будет еще жить дней 5, затем испортится.

Советую, если делаете ответственные платы, то лучше размешать с формалином свежую порцию раствора химического меднения.

Характеристики меди

Медь является одним из первых металлов, которые человек научился добывать и перерабатывать. Изделия из меди и ее сплавов использовались еще в 3 веке до н.э., о чем свидетельствуют исторические данные и результаты археологических раскопок. Широкому распространению меди во многом способствовало то, что она достаточно легко поддается обработке различными механическими способами. Кроме того, ее можно легко расплавить.

Медь, поверхность которой отличается явно выраженной желтовато-красной окраской, в силу своей мягкости легко поддается обработке методом пластической деформации. Поверхность меди при ее взаимодействии с окружающим воздухом покрывается оксидной пленкой, которая и окрашивает ее в такой красивый цвет.

Марки технической меди и их химический состав

Большое значение имеют и такие характеристики меди, как электро- и теплопроводность, по которым она занимает второе место среди всех металлов, уступая только серебру. Благодаря таким свойствам изделия из нее активно используются в электротехнической промышленности, а также в тех случаях, когда необходимо обеспечить быстрый отвод тепла от нагретого предмета.

Еще одним важным параметром меди, напрямую влияющим на объем энерго- и трудозатрат, расходуемых при производстве изделий из нее, является температура плавления. Для чистой меди температура, при которой металл переходит из твердого состояния в жидкое, составляет 1083°. Если смешать медь с оловом и получить бронзу, то температура плавления такого сплава будет составлять уже 930–1140° в зависимости от содержания в нем основной легирующей добавки. Такой , как латунь, который получают путем добавления к основному металлу цинка, обладает еще меньшей температурой плавления, которая находится в интервале 900–1050°.

Электрические свойства меди при температуре 20°

Если вы решили реализовать в домашних условиях такой технологический процесс, как , важно знать еще один параметр – температуру ее кипения. При 2560° медь начинает буквально кипеть, что хорошо заметно по видео данного процесса. Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве

Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве.

При соблюдении технологии плавки на поверхности медного слитка могут остаться неглубокие поры, легко удаляемые шлифовкой

Гальваника медью в домашних условиях

В домашних условиях гальваническое меднение чаще всего используют в декоративно-прикладных целях или для нанесения медного подслоя перед никелированием и хромированием.

Обычно медью покрывают мебельную фурнитуру, предметы кухонной утвари, элементы светильников, бижутерию, а также части инструментов и ножей. Подбор параметров гальванизации домашними мастерами обычно делается опытным путем по цвету и качеству покрытия.

Те, кто занимается меднением серьезно, в том числе и в коммерческих целях, используют в своих установках регулируемые источники тока или реостаты, с помощью которых устанавливается необходимая плотность тока и скорость осаждения.

А одно из самых популярных направлений современной домашней гальваники — это покрытие медью высушенных растений, орехов, желудей и насекомых. Такие изделия выглядят впечатляюще и используются не только в декоративных целях, но и для изготовления бижутерии (см. ниже меднение и патинирование грецкого ореха).

Техника безопасности

Поэтому в домашних условиях все работы по приготовлению электролита и химической обработке изделия необходимо выполнять в резиновых перчатках и клеенчатом фартуке, а при больших объемах использовать респираторы и защитные очки.

Сам по себе медный купорос не требует какой-либо обработки перед утилизацией, но, поскольку электролиты на его основе содержат серную кислоту, ее необходимо нейтрализовать с помощью щелочи или соды.

Оборудование и материалы

Для меднения в домашних условиях требуется минимальный набор оборудования и реактивов. В качестве гальванической ванны можно использовать любую пластиковую или стеклянную емкость.

Для приготовления электролита для меднения необходим только медный купорос и чистая вода, а источником тока может служить старая зарядка для телефона или пара батареек. Другие материалы и инструменты также немногочисленны и доступны в бытовых условиях.

В первую очередь это серная кислота (жидкость для аккумуляторов), сода, обрезки медных изделий (труб, шинок, контактов) и наждачка на матерчатой основе.

Рецепт простого раствора

В состав самого простого электролита, используемого для меднения в домашних условиях, входят всего два реагента: сернокислая медь (медный купорос) в количестве 180÷220 г/л и серная кислота (жидкость для аккумулятора) — 40÷60 г/л. В качестве блескообразующих добавок к такому электролиту домашние мастера используют желатин и декстрин (0.5÷1.0 г/л).

В Интернете можно найти рецепты электролитов с добавками, которые способствуют созданию медных покрытий с разнообразными эффектами (матовость, зеркальный блеск, различные оттенки).

При этом, как правило, указывают только название химического вещества и условия его применения, а насколько оно доступно и где его взять — не пишут.

Источник статьи: http://wikimetall.ru/metalloobrabotka/mednenie-v-domashnih-usloviya.html

Различные типы меднения

Меднение в домашних условиях могут выполнять даже новички в этом направлении. Чтобы получить качественное покрытие необходимо изучить все нюансы процедуры. Она может проводиться по одной из 2 технологий:

  1. Погружение в электролит. Заготовка погружается в жидкость и подается электроток. Обычно, используется в тех ситуациях, когда ее габариты не значительны.
  2. Без погружения в раствор. Более сложный процесс, но позволяющий достигать лучшего качества обмедненных поверхностей.

Во всех случаях необходимо подведение электричества, которое активизирует вещество.

Оптимальный метод выбирается в соответствии с поставленной целью:

  • Формирование защитных и декоративных покрытий. Зачастую происходит смешение с никелем, хромом и медью. Получаются прочные и надежные поверхности.
  • Защита при цементировании.
  • Реставрация изделий.

Рассмотрим подробнее каждый из вариантов.

Омеднение с помещением в электролит

Наиболее доступный способ обмеднения в быту. Необходимы:

  • Небольшого размера пластинки из меди.
  • Проволока для проведения тока.
  • Источник тока.
  • Устройство для регулирования и измерения тока.

Последовательность действий:

  1. Чтобы растворить медь используется обыкновенный электролит, свободно продающийся или легко готовящийся своими руками. Для приготовления следует делать смесь серной кислоты с дистиллированной водой в пропорциях 3 к 100 миллилитрам. Нужная смесь получается после добавления в него 20 г медного купороса.
  2. Деталь следует очистить щеткой и наждачкой, чтобы удалить оксидную пленку.
  3. Провести обезжиривание раствором соды и промыть.
  4. Подготовленная емкость заполняется электролитическим раствором.
  5. В емкости размещаются 2 пластинки, подключенные к токопроводящей проволоке. Меж ними помещается деталь, которой предполагается омеднение. Нужно проверить полное закрытие смесью и пластинок, и заготовки.
  6. Затем пластины подключаются к плюсовому полюсу источника, а заготовка садится на минус. Предварительно желательно подключать амперметр и реостат. Выставить диапазон тока до 15 мА на 1см2 площади поверхности изделия.
  7. Выдержать в течение 20 минут.
  8. Выключается питание, заготовка извлекается из раствора. В итоге получается тонкое покрытие из меди. Продолжительность процесса оказывает влияние на толщину напыления. Благодаря технологии можно добиваться слоя до 300 мкм и более.

Метод возможно применять для обновления алюминиевых вещей, используемых в быту. Например, столовая утварь из алюминия после омеднения обретет вторую молодость.

Омеднение без помещения в раствор

Метод не предполагает залитие детали жидкостью. Он прекрасно подходит обработки цинковых или алюминиевых изделий.

Последовательность действий:

  1. Необходим провод – многожильный, медный. Снять изоляцию. Одна сторона распушается, делая подобие кисточки. Можно сделать что-то вроде рукояти для большего комфорта в работе. Другой край провода подключается к положительному полюсу источника тока. Напряжение – не больше 6 Вольт.
  2. Вышеописанным методом подготавливается электролит с медным купоросом. Посуда может использоваться любого типа, но лучше подобрать ту, которая позволит беспроблемно погружать кисточку из провода. Обрабатываемая деталь очищается от загрязнений. После этого проводами садится на отрицательный полюс источника тока.
  3. Процедура проводится следующим образом. Распушенный край-кисточка время от времени помещается в раствор. Ей следует проводить вдоль заготовки, не прикасаясь к ней. Поверхность нужно смочить электролитическим раствором. Во время обработки за счет отрицательного заряда деталь будет подтягивать ионы меди, покрываясь ими.

Это меднение металла подойдет для габаритных вещей, которые затруднительно поместить в емкость.

Как проводится химическое меднение на дому?

Чтобы нанести медь в домашних условиях, вам в первую очередь необходимо приготовить рабочий раствор и создать два разноименных электрода, так как в процессе омеднения ионы меди, находящиеся в электролитическом растворе, будут притягиваться к отрицательному полюсу. Нанесение на металлическую поверхность меди в промышленных условиях и в промышленных масштабах чаще всего используется как завершающая операция в обработке изделия.

Однако если вы собираетесь проводить меднение металла собственными силами, то должны знать порядок работы. Далее мы рассмотрим, как покрыть деталь медью в домашних условиях химическим способом с погружением в раствор электролита. Этот процесс легко можно выполнить на дому, если знать все особенности применения меди. Алгоритм выполнения:

1. Для растворителя меди на металле можно взять обычный аккумуляторный электролит. Он продается в любом хозяйственном магазине, однако его можно изготовить и собственными силами. Необходимо соблюдать пропорцию 100:3 дистиллированной воды и серной кислоты с поправкой на необходимый объем электролита. Затем в смесь добавляется до 20 грамм сульфата меди (медный купорос).

2. Предварительно деталь необходимо очистить абразивными материалами, для удаления оксидного слоя. Далее поверхность покрываемой детали обезжиривается горячим раствором карбоната натрия и промывается проточной водой (чтобы на металлах не скапливались различные загрязнения).

3. Гальванизационная емкость заполняется электролитическим раствором до нужного объема, после чего в раствор помещаются две медные пластины (на покрытиях которых будут образовываться ионы меди) на проводниках, а между ними размещается деталь, предназначенная для омеднения.

4. Концы проводников и подвесы для детали подключаются к источнику тока, в качестве которого могут выступать гальванические элементы либо аккумуляторные батареи (плюс на пластины, минус на деталь). В цепь предварительно необходимо последовательно подключить амперметр и реостат.

5. Процесс гальванизации занимает от пятнадцати до двадцати минут, после чего нужно отключить электропитание и извлечь деталь из раствора. Этого времени достаточно чтобы деталь покрылась тонким слоем меди. Для получения более толстого покрытия необходимо увеличить продолжительность процесса. Металлическая поверхность становится более прочной, повышаются ее технические и эксплуатационные свойства.

Как сделать раствор для домашнего меднения (3 видео)

Расчет концентрации реактивов сернокислого электролита меднения

Определение концентрации серной кислоты 

Для определения концентрации серной кислоты используется метод титрования. Для анализа потребуются следующие приборы:  бюретка на 200 мл, пипетка на 1-2 мл., стеклянная палочка и два стеклянных стаканчика. Потребуются следующие реактивы: раствор 0,2н (нормальный раствор) гидроксида натрия NaOH или гидроксида калия KOH и 0,1%-ный раствор индикатора — метилового оранжевого. Нормальный раствор готовится по плотности гидроксида, например, при плотности гидроксида натрия равной 1,01 н. раствор будет равен 0,238.

Анализ начинают с отбора проб из разных мест гальванической ванны. Из колбы берут 20 мл электролита и разбавляют водой в два-три раза. В разбавленный электролит с помощью стеклянной палочки вносят 1 каплю индикатора и приступают к титрованию щелочью. Цвет раствора меняется с розового до желто-лимонного. Затем производится расчет содержания серной кислоты по формуле:

  • где x — количество свободной серной кислоты;
  • А — количество гидроксида, затраченного на титрование пробы, мл.
  • В — количество электролита, взятое для анализа, мл.
  • н. — нормальность раствора гидроксида.
  • 0,049 — коэффициент перерасчета на содержание серной кислоты.
  • 1000 — коэффициент перерасчета на 1 л.

Проведите титрование и внесите количество гидроксида (А) в форму расчета.

Определение содержания меди

Самый простой способ определения содержания меди в растворе сернокислого электролита основан на том, что плотность раствора сульфата меди и серной кислоты при одинаковой концентрации равны, а при их смешении плотность раствора не меняется. Таким образом, измерив плотность электролита при определенной температуре и зная содержание в растворе серной кислоты, можно определить количество сульфата меди. Потребуются следующие приборы: ареометр, термометр, цилиндр. Определите плотность раствора электролита при температуре 25С. и внесите данные в форму расчета.

Влияние концентрации исходных компонентов на качество гальванического покрытия

При недостаточной концентрации серной кислоты и (или) сульфата меди слой меди на поверхности основного металла имеет низкую прочность. Поверхность сыпучая, недостаточно гладкая и имеет ярко выраженную кристаллическую структуру. Добавление серной кислоты и сульфата меди по результатам анализа позволяет решить эту проблему. Если осадок меди имеет темный равномерный цвет, то скорее всего, помимо повышенной плотности тока причина заключается в недостаточной концентрации серной кислоты, т. к. серная кислота предупреждает образование на катоде окиси меди, которая имеет темный цвет и, внедряясь в отложение делает его шершавым.

  • Установку для гальванопластики в домашних условиях собрать несложно, оборудование и материалы для электрохимического осаждения меди находятся в…

  • Гальванопластика это раздел гальваники, изучающий методы получения копий предметов, выполненных с помощью гальванического осаждения металла на…

  • Металлизация диэлектриков — это целое направление гальваники. В процессе металлизации получают изделия из пластмасс композитных материалов или…

  • Расчет количества реактивов электролитов меднения в зависимости от рабочего объема гальванической емкости. Количество реактивов и режимы процессов…

  • В зависимости от требований, предъявляемых к покрываемым изделиям различают три вида гальванических покрытий – защитно-декоративные покрытия,…

Использование меднения

Покрытие медью различных заготовок в последнее время часто проводится в домашних условиях. В большинстве случаев технология применяется для достижения следующих целей:

  1. Декорирование металла или пластика. Меднение металла в домашних условиях часто проводится для того, чтобы получить старинные на вид изделия, которые пользуются большой популярностью. Специальная процедура состаривания позволяет создать эффект длительного использования изделия. Кроме этого, медь после нанесения напоминает золото. Именно поэтому небольшой слой можно нанести для получения статуэтки или сувенира.
  2. Гальванопластика. Меднение стали подобным образом также может проводиться в домашних условиях. Суть технологии заключается в создании восковой или пластиковой основы, которая покрывается слоем рассматриваемого сплава. Гальванопластика часто применяется для получения ювелирных изделий или сувениров, матриц и волноводов. Применение специальных материалов позволяет существенно повысить качество покрытия.
  3. Получение деталей, используемых при создании различных механизмов. Меднение чугуна или другого металла проводят на производственных площадках при различных технологий. Покрытие заготовки медью позволяет существенно повысить электротехнические качества. Подобным образом можно получить клеммы или прочие подобные элементы, которые будут эксплуатироваться под напряжением. Изделия из чистой меди обходятся очень дорого. Именно поэтому часто применяется рассматриваемая технология.

Меднение стали

Меднение пластика в домашних условиях проводится крайне редко, так как подобный материал не выдерживает воздействие высокой температуры. Кроме этого, пластичность основания приводит к появлению структурных трещин.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector