Применение калькулятора для расчета теплоизоляции трубопроводов
Содержание:
- Удобство работы с калькулятором
- Введите данные в онлайн калькулятор для расчёта
- Калькулятор расхода рулонной битумной изоляции для труб
- Как произвести расчет без калькулятора
- Устранение дефектов изоляции
- Калькулятор расчета термоизоляции труб отопления при наружной прокладке
- Популярные способы утепления дома
- СМЕТА МДС 2021
- О калькуляторе
- Online программа расчета теплопотерь дома
- Характеристики различных материалов
- Выбираем утеплитель
- Методика просчета однослойной теплоизоляционной конструкции
- Варианты изоляции трубопровода
Удобство работы с калькулятором
Независимо от типа магистралей все они подлежат изолированию. Обычно трубы стараются прокладывать под землей. Но в частном строительстве нередки случаи, когда некоторые фрагменты инженерных систем проходят по улице, через подвал, чердак или неотапливаемое помещение. Наружная прокладка становится вынужденным решением, если, например, необходимо провести водопровод или теплотрассу к подсобной или технической постройке, а котельная находится в жилом доме.
Такой участок магистрали необходимо защищать иначе, чем подземные коммуникации: от физического воздействии природных явлений (промерзания), коррозии, а также максимально уменьшить потери тепловой энергии. Все эти задачи решаются при помощи дополнительной термоизоляции. Стоит сказать, что расчет объема изоляции трубопроводов на калькуляторе удобен по трем причинам:
- Оптимизирует затраты.
- Экономит ваше время.
- Предлагает дополнительные возможности. Например, при расчете минераловатных цилиндров погонные метры переводятся в объем (м³). Это позволяет понять, какой автомобиль подойдет для транспортировки материала.
Термоизоляция – путь к экономии Источник jhmrad.com Правильный расчет позволит грамотно выполнить работы, и трубы будут поддерживаться в надлежащем состоянии. Большую роль играет и выбор материала, ведь он не только препятствует потерям тепла, но и предотвращает коррозию, а, значит, помогает продлить срок эксплуатации системы.
Введите данные в онлайн калькулятор для расчёта
Перед использованием калькулятора прочтите инструкцию.
Рассчитанную тепловую мощность рекомендуется увеличить на 20% для покрытия неучтенных обстоятельств, что и предусмотрено в предлагаемом расчёте. Для того, чтобы система водяного отопления правильно функционировала, необходимо обеспечить нужную скорость теплоносителя в системе.
- Скорости продвижения воды в трубопроводах рекомендуется в пределах от 0,3 до 1.5 м/сек;
- при скорости меньшей 0.3 м/сек в системе могут появляться воздушные пробки;
- при скорости большей 1.5 м/сек – гидравлические шумы. Таким образом,оптимальная скорость продвижения воды в трубопроводах находится в пределах от 0,4 до 1 м/с.
Для расчёта потерь давления кроме диаметра и длины трубопровода в нашем онлайн калькуляторе, необходимо также задать материал труб, эквивалентная шероховатость которых определяет затраты на преодоление трения жидкости о стенки труб; полученный результат умножается на коэффициент 1.2 для учета гидравлического сопротивления отводов, поворотов, кранов и других элементов трубопровода.
Калькулятор расхода рулонной битумной изоляции для труб
Как правильно рассчитать расход гидроизоляции на трубу.
Для гидроизоляции трубы усиленного и/или весьма усиленного типа мы будем применять такие материалы:
- Грунтовка асмольная жидкая.
- Битумно-полимерная (или аналоги) лента с липким слоем.
Перед началом нанесения изоляции нам нужно понимать как правильно рассчитать расход изоляции (ленты и праймера) на изолируемый участок трубопровода.
Исходные данные необходимые для расчета:
- Диаметр трубы.
- Протяженность участка.
- Тип изоляции согласно ГОСТ / ДСТУ: усиленный или весьма усиленный тип.
Расчет изоляции на трубу — формула.
Рассчитаем площадь поверхности трубы по формуле:
S = π × d × h
- S — площадь поверхности участка трубы.
- π ≈ 3,14
- d — диаметр трубы.
- h — длина участка трубы.
Расход битумной ленты толщиной в 1,8 мм на 1 метр квадратный.
Весьма усиленная гидроизоляция (ВУС):
m = S × 4 кг/м² — расход ленты на квадрат поверхности ВУС изоляции
Усиленная гидроизоляция (УС):
m = S × 2,5 кг/м² — расход ленты для изоляции усиленного типа
- m — масса ленты.
- S — площадь изолируемой поверхности.
Расход грунтовки (праймера) в обеих случаях рассчитывается из расхода 300 мл/м².
Важно: расчеты совпадают с фактическим объемом материалов при условии соблюдения технологии нанесения изоляции. А именно:
- лента для ВУС изоляции наносится в нахлест 50% за один проход;
- лента для ВУ изоляции наносится в нахлест от 5% до 10%, образуя узкую полосу нахлеста на стыках;
- грунтовка наносится лишь на поверхность трубы (металла) тонким ровным слоем до 2 мм.
Как произвести расчет без калькулятора
Зимой не очень приятно находиться и засыпать в холодной комнате, а тепло создает нормальные условия для жизни и благотворно отразится на здоровье.
Перед началом монтажа отопительной системы необходимо провести расчет диаметра трубы для отопления. Если этот расчет будет сделан правильно, то при минимальных энергетических затратах производительность будет высокой.
Чтобы такого не случилось, стоит грамотно и качественно провести все пункты от первого до последнего и выбрать оптимальный диаметр (символьное обозначение ∅) труб. Чаще всего используются системы с принудительной циркуляцией теплоносителя.
Устранение дефектов изоляции
Со временем для изоляции трубопровода потребуется ремонт.
Конечно, правильная эксплуатация позволяет продлить сроки службы не только труб, но и отделки. Периодически требуется проводить осмотр, после чего выполнять частичный ремонт, чтобы не доводить до капитального, т. е.
замены самого слоя изоляции или в худшем случае труб. Как избежать ремонтов? Необходима установка специальных датчиков, контролирующих состояние системы.
Сам ремонт может заключаться в выполнении таких действий:
Регулярно следует проводить осмотр состояния поверхности изоляции. Если есть повреждения, то надо залатать дефектный участок, осмотреть поверхность трубы.
Дальнейший ремонт зависит от того, в каком состоянии находятся трубы. Обычно требуется просто счистить следы коррозии, но в более сложных случаях нужна замена отдельных участков. Затем наносится новый слой изоляции трубопровода.
При ремонте покрытия следует выбирать тот же материал, который и был ранее. Если он по каким-либо условиям не удовлетворяет требованиям, то заменять следует всю изоляцию, чтобы не происходило теплопотерь, не возникло участков, подверженных коррозии.
Для теплоизоляции труб и их защиты от коррозии можно применять разные материалы. Перед тем как приобретать их, следует правильно выбрать покрытие.
Антон Михайлович Дергачев
Никаких проблем. Берем перф и перфорируем)
Интересная инфа, не знал что надо армировать пено-, газоблок
Добавлю в закладки. Как раз планирую ставить каркасник.
В последнее время все чаще задумываюсь о постройке дома, нахожу много подобных полезных статей. Однозначно буду делать пароизоляцию, тем более, что ва.
Спасибо. Очень подробно и понятно, а в моем случае и актуально.
Предлагаем Вам калькулятор для автоматизированного расчета объема изоляции для магистралей различного назначения – канализации, воздуховодов, отопления или газовых трубопроводов. Рекомендуем предварительно ознакомиться с инструкцией.
В условиях нашей страны с ее огромными просторами трубопроводный транспорт является самым эффективным средством транспортировки жидких продуктов. Размеры труб при этом достигают трехметрового диаметра, что позволяет транспортировать по ним большие объемы продуктов. Естественно, что такие магистрали нуждаются в определенной защите от разных факторов:
- коррозии всех видов;промерзания;физического воздействии природных явлений;от несанкционированного вмешательства посторонних лиц.
Все магистрали, включая газопроводы и нефтепроводы, не говоря уже о водных системах, подлежат изолированию работы в температурном интервале -45 + 60 градусов. Массовое применение такой технологической операции требует тщательного расчета потребности в материалах покрытия поверхности труб, чтобы расходы на нее были оптимальными, подсчет изоляции трубопроводов с использованием различных калькуляторов является необходимостью.
Калькулятор расчета термоизоляции труб отопления при наружной прокладке
В частном строительстве могут случиться ситуации, когда котельная расположена в основном здании, но от него требуется провести теплотрассу к другой постройке – жилой, технической, подсобной, сельскохозяйственной и т.п. Получается, что некоторые участки трубы проходящие, например, через неотапливаемые помещения, через подвалы или чердаки, проложенные в подземных каналах а иногда – и просто на открытом воздухе, чтобы не допустить ненужных потерь тепловой энергии потребуют дополнительной термоизоляции.
Калькулятор расчета термоизоляции труб отопления при наружной прокладке
Удобнее всего, конечно, использовать готовые утеплительные полуцилиндры, но если такой возможности нет, то можно применить и минеральную вату. Найти требуемые значения толщины утеплителя несложно – для этого есть соответствующие таблицы. Проблема в том, что любой волокнистый утеплитель при таком использовании со временем обязательно даст усадку, и его толщины может стать недостаточно. Предусмотреть этот нюанс поможет калькулятор расчета термоизоляции труб отопления при наружной прокладке.
Для расчетов потребуются некоторые табличные данные – они указаны ниже, с соответствующими пояснениями.
Табличные данные для расчета и пояснения по его проведению
Точный расчет подобного утепления теплотрассы – это весьма сложные вычисления, и проводит их нет необходимости, так как основные показатели давно определены и сведены в таблицы. Ниже представлена таблица, которую с успехом можно использовать при утеплении теплотрасс минеральной ватой для практически всей Европейской части России. При желании, для районов с более суровым или, наоборот, мягким климатом можно найти свои значения, вбив в поисковике «СП 41-103-2000».
Наружный диаметр трубы, мм | Температурный режим теплоносителя, °С | |||||
подача | обратка | подача | обратка | подача | обратка | |
65 | 50 | 90 | 50 | 110 | 50 | |
Толщина минераловатной изоляции, мм | ||||||
45 | 50 | 50 | 45 | 45 | 40 | 40 |
57 | 58 | 58 | 48 | 48 | 45 | 45 |
76 | 67 | 67 | 51 | 51 | 50 | 50 |
89 | 66 | 66 | 53 | 53 | 50 | 50 |
108 | 62 | 62 | 58 | 58 | 55 | 55 |
133 | 68 | 68 | 65 | 65 | 61 | 61 |
159 | 74 | 74 | 64 | 64 | 68 | 68 |
219 | 78 | 78 | 76 | 76 | 82 | 82 |
273 | 82 | 82 | 84 | 84 | 92 | 92 |
325 | 80 | 80 | 87 | 87 | 93 | 93 |
Любая минеральная вата при накручивании на трубы обязательно со временем даст усадку. Можно, конечно, «намотать» ее с большим запасом, но это нерентабельно, а кроме того, СНиП определяет и предельно допустимые максимальные толщины утепления:
Наружный диаметр трубопровода, мм | Предельная толщина термоизоляции трубы, мм, при температуре носителя | |
до +19°С | +20°С и более | |
18 | 80 | 80 |
25 | 120 | 120 |
32 | 140 | 140 |
45 | 140 | 140 |
57 | 150 | 150 |
76 | 160 | 160 |
89 | 180 | 170 |
108 | 180 | 180 |
133 | 200 | 200 |
159 | 220 | 220 |
219 | 230 | 230 |
273 | 240 | 230 |
325 | 240 | 240 |
предельная толщина Лучше всего – провести вычисления, в которых учтен коэффициент уплотнения материала и диаметр утепляемой трубы. Для этого есть соответствующая формула, которая и заложена в предлагаемый калькулятор.
А коэффициент уплотнения несложно определить из следующей таблицы:
Минераловатные утеплители и диаметр изолируемых труб | Коэффициент уплотнения Kc. |
Маты минеральной ваты прошивные | 1.2 |
Маты термоизоляционные «ТЕХМАТ» | 1,35 ÷ 1,2 |
Маты и полотна из супертонкого базальтового волокна (в зависимости от условного диаметра трубы, мм): | |
→ Ду | 3 |
̶ то же, при средней плотности 50-60 кг/м³ | 1,5 |
→ Ду ≥ 800, при средней плотности 23 кг/м ³ | 2 |
̶ то же, при средней плотности 50-60 кг/м³ | 1,5 |
Маты из стеклянного штапельного волокна на синтетическом связующем, марка: | |
→ М-45, 35, 25 | 1.6 |
→ М-15 | 2.6 |
Маты из стеклянного шпательного волокна «URSA», марка: | |
→ М-11: | |
̶ для труб с Ду до 40 мм | 4,0 |
̶ для труб с Ду от 50 мм и выше | 3,6 |
→ М-15, М-17 | 2.6 |
→ М-25: | |
̶ для труб с Ду до 100 мм | 1,8 |
̶ для труб с Ду от 100 до 250 мм | 1,6 |
̶ для труб с Ду более 250 мм | 1,5 |
Плиты минераловатные на синтетическом связующем марки: | |
→ 35, 50 | 1.5 |
→ 75 | 1.2 |
→ 100 | 1.1 |
→ 125 | 1.05 |
Плиты из стеклянного штапельного волокна марки: | |
→ П-30 | 1.1 |
→ П-15, П-17 и П-20 | 1.2 |
Полученное значение становится оптимальным – оно и гарантировано обеспечивает необходимый уровень утепления теплотрассы, и не приводит к ненужному перерасходу минеральной ваты.
При определенных условиях может получиться, что расчет дает толщину меньше табличной. В этом случае — на практике применяется исходное табличное значение.
Популярные способы утепления дома
Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:
- Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
- Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
- Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.
По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.
СМЕТА МДС 2021
Программа для составления смет на строительство и проверки сметной документации
ГОСУДАРСТВЕННЫЕ СМЕТНЫЕ НОРМАТИВЫ
ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА СТРОИТЕЛЬНЫЕ И СПЕЦИАЛЬНЫЕ СТРОИТЕЛЬНЫЕ РАБОТЫ ГЭСН-2001
Государственные сметные нормативы. Государственные элементные сметные нормы на строительные и специальные строительные работы (далее — ГЭСН) предназначены для определения потребности в ресурсах (затрат труда рабочих-строителей, машинистов, времени эксплуатации строительных машин и механизмов, материальных ресурсов) при выполнении строительных и специальных строительных работ и для составления на их основе сметных расчетов (смет) на производство указанных работ ресурсным и ресурсно-индексным методами. ГЭСН являются исходными нормами для разработки других сметных нормативов: единичных расценок федерального, территориального и отраслевого уровней, индивидуальных и укрупненных сметных нормативов. Утверждены и внесены в федеральный реестр сметных нормативов, подлежащих применению при определении сметной стоимости объектов капитального строительства, строительство которых финансируется с привлечением средств федерального бюджета Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 30.01.2014 г. N 31/пр (в ред. Приказа Минстроя России от 07.02.2014 г. N 39/пр).
Теплоизоляционные работы
2.26. Исчисление объемов работ при использовании ГЭСН части 26 «Теплоизоляционные работы».
2.26.1. Объем изоляции «в деле» (Ои)м 3 , приходящийся на 1 м длины трубопроводов или оборудования цилиндрической формы, исчисляется по формуле:
где Т — толщина изоляционного слоя, м; Д — наружный диаметр трубопровода или оборудования, м.
2.26.2. Длина изолируемых трубопроводов, а также оборудования цилиндрического и прямоугольного сечений и т.п. определяется по осевой линии для каждого сечения, причем арматура и фланцы, фитинги и т.д. из длины не исключаются.
2.26.3. Периметр многоугольного и подобного сечения определяется как среднеарифметическая величина периметров внутренней и наружной поверхности изоляции.
2.26.4. Объем изоляции отдельных мест у контрольно-измерительных приборов и арматуры, а также возле всякого рода люков, штуцеров, отверстий на оборудовании учтен нормами, при этом длина изолируемых трубопроводов измеряется без вычета указанных мест.
2.26.5. Объем работ по изоляции холодных поверхностей строительных конструкций определяется умножением площади изолируемой поверхности на толщину изоляции согласно проекту. Объем противопожарных поясов в объем изоляции не включается, т.к. их устройство предусмотрено отдельно (табл.26-01-37, 26-01-40).
2.26.6. Объем работ по изоляции безбалочных перекрытий снизу плитными утеплителями следует исчислять раздельно для перекрытий и для колонн, при этом изоляция капителей должна учитываться в объеме изоляции перекрытий.
2.26.7. Объем работ по отделке изоляции «в деле» — штукатурке, оклейке, покрытию, установке каркаса, сетки, а также по окраске изоляции должен исчисляться по наружной поверхности отделки.
2.26.8. Объем работ по покрытию изоляции (Оп)м 2 , приходящийся на 1 м длины трубопроводов или оборудования цилиндрической формы, исчисляется по формуле:
где Д — наружный диаметр трубопровода или оборудования, м; Т — толщина изоляционного слоя, м.
2.26.9. Объем работ по отделке (покрытию) изоляции (Оо)м 2 , приходящийся на 1 м 3 изоляции, определяется по формуле:
,
где Д — наружный диаметр трубопровода или оборудования, м; Т — толщина изоляционного слоя, м.
2.26.10. В нормах табл.26-01-045 площадь изолируемой поверхности стен надлежит исчислять за вычетом проемов по наружному обводу коробок. При наличии в проеме двух коробок площадь проема исчислять по обводу наружной коробки.
2.26.11. В нормах табл.26-01-045 площадь изолируемых архитектурных деталей (пилястры, полуколонны, карнизы, парапеты, эркеры, лоджии, пояски и т.п.) следует включать в общую площадь изолируемой поверхности стен.
Источник
О калькуляторе
Онлайн-калькулятор позволяет рассчитать теплопотери бытового трубопровода находящегося в режиме останова и подобрать саморегулирующийся греющий кабель для компенсации тепловых потерь и защиты трубы от замерзания.
Калькулятор позволяет рассчитывать тепловые потери через поверхность трубопровода, расположенного на открытом воздухе, в помещении и под землей.
Алгоритмы расчета тепловых потерь через стенку трубы соответствуют:
- ГОСТ 62086-2-2005
- СП 41-103-2000
Но при этом имеют определенные ограничения:
- Расчет производится на поддержание температуры +5°С на поверхности трубы.
- Материал трубопровода и кабельная арматура не учитываются.
Данные о минимальной температуре окружающей среды соответствуют СНиП 23-01-99.
Данной функциональности достаточно для расчета защиты от замерзания водопроводных и канализационных труб.
Порядок применения
- Введите наружный диаметр трубы в мм.
- Выберите расположение в выпадающем списке: в помещении, на улице, под землей.
- Если выбрано расположение “на улице”, Вы можете скорректировать параметр “Скорость ветра”. По умолчанию он равен 5 м/с.
- Выберите материал теплоизоляции.
- При необходимости скорректируйте значение Теплопроводности.
- Выберите толщину теплоизоляции.
- Выберите географическое Местонахождение обогреваемого трубопровода. Если выбрать регион в выпадающем списке, то нужное значение “Минимальной температуры воздуха” подставится автоматически. В списке присутствуют не все регионы, а только указанные в СНИПе.
- Либо введите минимальную температуру воздуха с клавиатуры. Для трубопроводов диаметром более 100 мм рекомендуется принимать температуру наиболее холодной пятидневки, обеспеченностью 0.92 (по СНиП 23-01-99). Для трубопроводов диаметром менее 100 мм рекомендуется принимать абсолютную минимальную температуру в регионе согласно СНИП.
- Нажмите кнопку “Посчитать”.Полученный результат на экране – это расчетные теплопотери без какого-либо запаса по мощности.
- Для того чтобы подобрать подходящий греющий кабель требуется задать диапазон “Запаса мощности обогрева”. По умолчанию греющие кабели подбираются с запасом по мощности 20-50%.Вы можете увеличить запас мощности до 120% с целью увеличения выборки греющих кабелей и нагревательных лент.
- Для того чтобы начать расчет заново нажмите кнопку “Сбросить”.
Отказ от ответственности
Онлайн-калькулятор имеет информационный характер.
ООО “Пробатум” не несет ответственность за самостоятельно выполненные Посетителем сайта расчеты.
Если необходимо получить достоверные данные и квалифицированно подобрать оборудование – заполните опросный лист “Обогрев трубопроводов” и вышлите его на адрес probatum-est@yandex.ru.
Теплотехнический расчет и подбор комплектующих к греющему кабелю выполняются бесплатно.
Введите наружный диаметр трубы в мм
Выберите расположение в выпадающем списке: в помещении, на улице, под землей.
Выберите материал теплоизоляции
При необходимости скорректируйте значение Теплопроводности
Выберите толщину теплоизоляции
Выберите географическое Местонахождение обогреваемого трубопровода. В списке присутствуют не все регионы, а только указанные в СНИПе
Если местонахождение отсутствует в предложенном списке, введите минимальную температуру воздуха с клавиатуры
Online программа расчета теплопотерь дома
Выберите город tнар = – o C
Введите температуру воздуха в помещении; tвн = + o C
Теплопотери через стены развернуть свернуть
Площадь наружных стен, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Толщина третьего слоя, м.
Теплопотери через стены, Вт
Теплопотери через окна развернуть свернуть
Введите площадь окон, кв.м.
Теплопотери через окна
Теплопотери через потолки развернуть свернуть
Выберите вид потолка
Введите площадь потолка, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Теплопотери через потолок
Теплопотери через пол развернуть свернуть
Выберите вид пола
Введите площадь пола, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Теплопотери через пол
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Площадь зоны 1, кв.м. что такое зоны?
Площадь зоны 2, кв.м.
Площадь зоны 3, кв.м.
Площадь зоны 4, кв.м.
Теплопотери через пол
Теплопотери на инфильтрацию развернуть свернуть
Введите Жилую площадь, м.
Теплопотери на инфильтрацию
О программе развернуть свернуть
Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.
Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).
03.12.2017 – скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).
10.01.2015 – добавлена возможность менять температуру воздуха внутри помещений.
FAQ развернуть свернуть
Как посчитать теплопотери в соседние неотапливаемые помещения?
По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?
Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.
Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно. Обсудить эту статью, оставить отзыв в Google+ | Facebook. Обсудить эту статью, оставить отзыв в Google+ | Facebook
Обсудить эту статью, оставить отзыв в Google+ | Facebook
Характеристики различных материалов
Значение нормируемого сопротивления теплопередаче наружной стены зависит от региона РФ, в котором расположена постройка.
Необходимый слой теплоизоляционного материала, определена исходя из следующих условий:
- наружная ограждающая конструкция здания – полнотелый керамический кирпич пластического прессования толщиной 380 мм;
- внутренняя отделка – штукатурка цементно-известковым составом толщиной 20 мм;
- наружная отделка – слой полимерцементной штукатурки, толщина слоя 0,8 см;
- коэффициент теплотехнической однородности конструкции равен 0,9;
- коэффициент теплопроводности утеплителя — λА=0,040; λБ=0,042.
Выбираем утеплитель
Главная причина замерзания трубопроводов – недостаточная скорость циркуляции энергоносителя. В таком случае, при минусовой температуре воздуха может начаться процесс кристаллизации жидкости. Так что качественная теплоизоляция труб – жизненно необходима.
Благо нашему поколению несказанно повезло. В недалеком прошлом утепление трубопроводов производилось по одной лишь технологии, так как утеплитель был один – стекловата. Современные производители теплоизоляционных материалов предлагаю просто широчайший выбор утеплителей для труб, отличающихся по составу, характеристикам и способу применения.
Сравнивать их между собой не совсем правильно, а уж тем более утверждать, что один из них является самым лучшим. Поэтому давайте просто рассмотрим виды изоляционных материалов для труб.
По сфере применения:
- для трубопроводов холодного и горячего водоснабжения, паропроводов систем центрального отопления, различных технических оборудований;
- для канализационных систем и систем водоотвода;
- для труб вентиляционных систем и морозильного оборудования.
По внешнему виду, который, в принципе, сразу же объясняет и технологию применения утеплителей:
- рулонные;
- листовые;
- кожуховые;
- заливочные;
- комбинированные (это скорее уже относится к способу изоляции трубопровода).
Основные требования к материалам, из которых изготавливаются утеплители для труб – это низкая теплопроводность и хорошая устойчивость к огню.
Под эти важные критерии подходят следующие материалы:
Минеральная вата. Чаще всего продается в виде рулонов. Подходит для утепления трубопроводов с теплоносителем высокой температуры. Однако если использовать минвату для изоляции труб в больших объемах, то такой вариант окажется не очень-то выгодным с точки зрения экономии. Тепловая изоляция с помощью минваты производится методом намотки, с последующим ее закреплением синтетической бечевкой или нержавеющей проволокой.
На фото трубопровод, утепленный минватой
Использовать его можно как при низких, так и при высоких температурах. Подходит для стальных, металлопластиковых и других полимерных труб. Еще одна положительная особенность – пенополистирол имеет цилиндрическую форму, причем его внутренний диаметр можно подобрать под размер любой трубы.
Пеноизол. По своим характеристикам находится в близком родстве с предыдущим материалом. Однако способ монтажа пеноизола совсем иной – для его нанесения требуется специальная распыляющая установка, так как он представляет собой компонентную жидкую смесь. После застывания пеноизола вокруг трубы образуется герметичная оболочка, почти не пропускающая тепло. К плюсам здесь также можно отнести отсутствие дополнительного крепления.
Пеноизол в деле
Фольгированный пенофол. Самая последняя разработка в сфере утеплительных материалов, но уже завоевавшая своих поклонников среди российских граждан. Пенофол состоит из полированной алюминиевой фольги и слоя вспененного полиэтилена.
Такая двухслойная конструкция не просто сохраняет тепло, а даже является неким обогревателем! Как известно, фольга обладает теплоотражающими свойствами, что позволяет накапливать и отражать тепло к изолируемой поверхности (в нашем случае это трубопровод).
Кроме того, фольгированный пенофол экологичен, слабогорюч, устойчив к температурным перепадам и повышенной влажности.
Как вы сами видите, материалов предостаточно! Выбирать, чем утеплять трубы, есть из чего. Но при выборе не забывайте учитывать особенности окружающей среды, характеристики утеплителя и его простоту монтажа. Ну и не помешало бы произвести расчет теплоизоляции труб, дабы сделать все грамотно и надежно.
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
Формула расчета теплоизоляции труб.
ln B = 2πλ [K(tт — tо) / qL — Rн]
В этой формуле:
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт — температура в градусах транспортируемой среды или теплоносителя;
- tо — температура наружного воздуха, ⁰C;
- qL — величина теплового потока, Вт/м2;
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Таблица 1
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | 1.15 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | 1.05 |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. | 1.15 |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Таблица 2
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | 0.12 | 0.10 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.017 | 0.015 |
tт = 300 ⁰C | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.015 | 0.013 |
tт = 500 ⁰C | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.016 | 0.014 | 0.012 |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз — наружный диаметр теплоизоляционной конструкции, м;
- dтр — наружный диаметр защищаемой трубы, м;
- δ — толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт — tо) / qF — Rн]
В этой формуле:
- δ — толщина теплоизоляционной конструкции, м;
- qF — величина нормируемого теплового потока, Вт/м2;
- остальные параметры — как в расчетной формуле для цилиндрической поверхности.
Варианты изоляции трубопровода
Напоследок рассмотрим три эффективных способа теплоизоляции трубопроводов.
Возможно, какой-то из них вам приглянется:
- Утепление с применением обогревающего кабеля. Помимо традиционных методов изоляции, есть и такой альтернативный способ. Использование кабеля весьма удобно и продуктивно, если учитывать, что защищать трубопровод от замерзания нужно всего лишь полгода. В случае обогрева труб кабелем происходит значительная экономия сил и денежных средств, которые пришлось бы потратить на земельные работы, утеплительный материал и прочие моменты. Инструкция по эксплуатации допускает нахождение кабеля как снаружи труб, так и внутри них.
Дополнительная теплоизоляция греющим кабелем
- Утепление воздухом. Ошибка современных систем теплоизоляции заключается вот в чем: зачастую не учитывается то, что промерзание грунта происходит по принципу «сверху вниз». Навстречу же процессу промерзания стремится поток тепла, исходящий из глубины земли. Но так как утепление производят со всех сторон трубопровода, получается, также изолирую его и от восходящего тепла. Поэтому рациональнее монтировать утеплитель в виде зонтика над трубами. В таком случае воздушная прослойка будет являться своеобразным теплоаккумулятором.
- «Труба в трубе». Здесь в трубах из полипропилена прокладываются еще одни трубы. Какие преимущества есть у этого способа? В первую очередь к плюсам относится то, что трубопровод можно будет отогреть в любом случае. Кроме того, возможен обогрев при помощи устройства по всасыванию теплого воздуха. А в аварийных ситуациях можно быстро протянуть аварийный шланг, тем самым предотвратив все отрицательные моменты.
Изоляция по принципу «труба в трубе»