Солнечные батареи для электроснабжения квартиры

Выбор параметров солнечной батареи

При выборе солнечной батареи перед покупателем встает вопрос «Как выбрать подходящую солнечную батарею?» Существует несколько видов фотоэлементов, имеющих свои преимущества и недостатки:

  1. Поликристаллические элементы, в которых полупроводник производится поликристаллическим способом, этот метод удешевляют солнечную батарею, но снижают эффективность её работы. КПД элементов составляет 17-19%.
  2. Монокристаллические. Если элементы выращиваются монокристаллическим способом, то КПД фотоэлементов составляет 20-21%. Стоимость батарей при таком способе производства кремния увеличивается, но площадь фотоэлементов для получения энергии того же количества снижается. Готовые солнечные батареи, изготовленными поликристаллическим способом имеют КПД 13-17 %, а с фотоэлементами, изготовленными монокристаллическим способом — КПД 15-18,5%,
  3. Аморфные. Самым низким КПД (4-6%) обладают солнечные батареи, в которых фотоэлементы изготавливают из аморфного кремния.
  4. Арсенид галлиевые. Для изготовления высокоэффективных преобразователей в настоящее время широко используются GaAs — Арсенид галлия, имеющий гетероструктуру и более широкую запрещенную зону, это позволяет увеличить КПД солнечных батарей до 35-40%, правда такой тип элементов имеет очень высокую цену и используется только в космической отрасли.

Рис. 2 Типы солнечных элементов

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Солнечная электростанция на воде

Подробности о крупнейшей в своем роде водной электростанции были опубликованы на сайте Управления по производству электроэнергии Таиланда (EGAT). Строители установили 144 тысяч солнечных панелей на на 120 гектарах воды, которая содержится в тайской плотине Сириндхорн. Для справки стоит отметить, что эта плотина перекрывает реку Лам Дом Ной и считается крупнейшим водным ресурсом провинции Убонратчатхани. Благодаря расположению на воде, для постройки станции не потребовались большие территории земли.

Солнечные панели с высоты птичьего полета

По словам представителей EGAT, солнечная электростанция будет работать вместе с установленной на плотине системой по выработке электроэнергии за счет движения воды. Это еще один весомый плюс нового сооружения, потому что совместная работа сразу двух выполняющих одну функцию систем сможет обеспечить бесперебойную выработку энергии. Вдобавок к этому, люди будут меньше рисковать остаться без света из-за погодных условий. Если выдастся пасмурный день, жители Таиланда все равно будут снабжены электричеством благодаря гидроэлектростанции.

Станция состоит из 144 тысяч солнечных панелей

Глава управления EGAT Бунянит Вонгрукмит (Boonyanit Wongrukmit) заявил, что при постройке водной электростанции они уделили много внимания сохранности окружающей среды. Дело в том, что даже задавшись целью очистить воздух от выбросов при помощи возобновляемой энергии, люди часто не продумывают свои действия до конца. Иногда установка большого количества панелей может отпугнуть диких животных и они рискую вымереть из-за отсутствия еды и укрытия. Чтобы свести вред для окружающей среды к минимуму, панели были установлены под углом, чтобы они не перекрывали свет рыбам и другим водным обитателям.

Панели установлены под углом, чтобы не вредить водным обитателям

Считается, 144 тысячи солнечных панелей смогут обеспечить мощность в 45 мегаватт. По сравнению с показателями самых крупных солнечных электростанций это мало, но для установленного на воде сооружения — это очень даже хорошо.

Астрофизические параметры Млечного Пути

Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.

Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.

https://youtube.com/watch?v=QUmLohLA0uM

Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.

Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.

Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.

Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.

Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.

Принцип действия фотоэлектрических преобразователей

Работа фотоэлементов базируется на фотоэлектрическом эффекте: при действии электромагнитных волн на вещество его электронам передается энергия фотонов. Весь рабочий процесс схематически в батареях проходит следующим образом:

  1. Солнечное излучение воздействует на внешний (n) и на внутренний (р) слои.
  2. В области р-n перехода создаются некомпенсированные электронно-дырочные пары.
  3. Возникшие свободные электроны переходят из р-слоя в n-слой. Дырки поступают в обратном направлении.
  4. В результате в первой пластине возникает переизбыток электронов. Она получает отрицательный заряд.
  5. Вторая пластина становится положительно заряженной.
  6. Создается источник постоянного тока.

Принцип действия ФЭП

Через металлические контакты электроны поступают в нагрузку. После нее они попадают обратно в n-слой. Цепь замыкается.

В зависимости от разновидности, ФЭП работают только при действии электромагнитного излучения определенного спектра частот. В двухслойных батареях в фотоэлектрическом движении принимают участие только те электроны, энергии которых достаточно для преодоления запрещенной зоны.

Использование многослойных фотоэлементов позволяет свести к минимуму данное ограничение. Такие приборы поглощают солнечную энергию в большем спектре излучения за счет послойного изменения ширины запрещенной зоны (изменяется от большей к меньшей).

Мощности отдельных ФЭП достаточно только для питания портативных устройств, например, наручных электронных часов. Для получения мощностей, достаточных для запитывания бытовых потребителей, отдельные фотоэлементы соединяют в солнечные модули.

Лучшие солнечные панели для частного дома

Солнечные модули представлены двух типов – кремниевые и пленочные. Выбирайте в зависимости от региона проживания, назначения и стоимости изделия

При покупке рекомендуем обратить ваше внимание на следующих производителей:

  • Hevel (Россия) – компания производит микроморфные и гетероструктурные панели с КФП до 20-22% и умеренной стоимостью;
  • Axitec (Германия) — моно и поликристаллических фотоэлементы из кремния. Панели мощностью от 260 до 330 Вт;
  • TopRaySolar (Китай) – поликристаллические батареи разной мощности (от 20 до 300 Ватт).

Обратите внимание, что выбор компании-производителя не имеет принципиального значения.

Пример: Установка солнечных батарей на крыше дома:

Подъем и крепление электрических солнечных панелей:

Солнечные батареи для частного дома: характеристики

Для частного дома, оптимальным вариантом будут солнечные батареи выполненные на основе кремния. Конечно, есть и другие виды, изготовленные из редких дорогих материалов с более хорошими характеристиками. Но они практически не используются в бытовой сфере, из-за высокой стоимостью и длительным сроком окупаемости. Поэтому их затрагивать мы сегодня не будем.

Монокристаллические солнечные батареи

Монокристаллические солнечные батареи отличаются тёмно-синим цветом внешней поверхности. Этот оттенок достигнут за счёт использования в основе высококачественного и чистого кремния.

Монокристаллические солнечные батареи для частного дома, обладают рядом положительных характеристик:

  • В первую очередь это высокий КПД с показателем 20-25%.
  • Во вторых, панели имеют не большие размеры с относительно высокой мощностью. Если сравнивать с поликристаллическими солнечными батареями.
  • Заявленный срок службы таких изделий не меньше 30 лет, при соблюдении правил эксплуатации.

Недостатков здесь не так и много, но их стоит упомянуть:

  • В первую очередь, это высокая стоимость монокристаллических солнечных батарей и соответственно длительный период окупаемости.
  • Повышенная чувствительность к пыли. Загрязнённая поверхность не принимает, а рассеивает свет по сторонам, соответственно показатель КПД существенно снижается.

Завышенная стоимость монокристаллических солнечных батарей, объясняется уникальным расположением элементов кремния. Кристаллы расположены под определённым углом и соответственно могут принимать солнечные лучи только перпендикулярного направления относительно поверхности батареи. Поэтому монокристаллические батареи поставляются с дополнительным оборудованием, которое автоматически регулирует угол наклона панелей в течение дня.

Из-за сложной конструкции и необходимости в постоянно прямом солнечном свете, монокристаллические батареи устанавливаются на открытой или высокой местности.

Поликристаллические солнечные батареи

Поликристаллические солнечные батареи отличаются неравномерным синим оттенком из-за использования кремния среднего качества. В данном случае кристаллы располагаются под разным углом, соответственно КПД поликристаллических солнечных батарей ниже чем у монокристаллических.

Так же стоит отметить преимущества поликристаллических солнечных батарей:

  • В первую очередь это высокий КПД при рассеянных солнечных лучах.
  • Возможность монтажа на любую плоскую поверхность без дополнительного поворотного механизма.
  • Относительно не высокая стоимость, по сравнению с предыдущим вариантом.
  • Довольно продолжительный период эксплуатации, не меньше 15 лет.

Давайте вместе рассмотрим недостатки поликристаллических солнечных батарей для частного дома:

  • Не высокий уровень КПД, максимум 15%.
  • Довольно объёмные и тяжёлые панели с довольно не высокой мощностью.

Если проанализировать российский рынок, то поликристаллические солнечные батареи завоевали большую популярность. Скорей всего это обусловлено простотой конструкции и не высокой стоимостью.

Аморфные солнечные батареи

Аморфные солнечные батареи отличаются от предыдущих моделей как по составу так и методу изготовления. В данном варианте кремнии наносится на поверхность панелей тонким сплошным слоем и покрывается защитной плёнкой. Такой способ изготовления мало затратный и соответственно уровень эффективности довольно низкий. Уровень КПД у данных моделей не превышает 10%.

Единственное преимущество аморфных солнечных батарей, в том что они изготавливаются и на гибком основании тоже. Что позволяет их устанавливать на кровлю сложной формы. Но такие варианты на сегодня стоят довольно дорого при не высокой мощности.

Особенности подбора солнечных панелей для дома

Расчет требуемой мощности станции можно выполнить самостоятельно. Хотя лучше будет лучше купить панель или договориться с фирмой по установке СЭС, чтобы они провели замеры определенной батареи для будущей станции. Так будет оценена эффективность производства электроэнергии в определенном месте. Как правило, фирмы эти замеры делают предварительно и предоставляют их своим клиентам. Если у панелей выработка оказалась высокой, они подойдут для электростанции.

Помимо мощности, стоит обратить внимание на другие показатели:

  • срок гарантийного обслуживания;
  • эффективность функционирования панелей;
  • температурный коэффициент.

Прочитать о них можно в техпаспорте панели. Продуктивность панели напрямую зависит от эффективности и обратно от температурного коэффициента. Гарантия в большинстве случаев предоставляет на 5–10 лет эксплуатации.

Гелиоустановки для систем горячего водоснабжения и отопления

Большое распространение и популярность приобрели именно солнечные коллекторы, которые применяются в качестве устройства для нагрева какой-либо жидкости (чаще всего, воды) с целью ее использования в системах горячего водоснабжения или отопления.

Другой вид оборудования для преобразования энергии солнца – батареи, которые принципиально отличаются от коллекторов тем, что сначала вырабатывают и аккумулируют электрическую энергию, а в дальнейшем ее можно использовать для хозяйственных нужд.

Но данный вид получения и переработки солнечной энергии требует приобретения дорогостоящего оборудования, главными конструктивными единицами которого являются фотоэлементы, что не всегда оправданно, особенно в регионах с небольшим количеством солнечных дней в году.

В отличие от них, солнечные коллекторы для нагрева воды или отопления дома имеют быструю окупаемость, особенно если изготовить их самостоятельно, так как в этом случае расходы составят лишь стоимость материалов, в число которых дорогие фотоэлементы не входят.

Использование солнечных коллекторов имеет очевидные преимущества:

  • снижение затрат на отопление и подогрев воды для системы горячего водоснабжения;
  • экологичность данного вида энергии.

Чаще всего использование коллекторов оправданно для использования в системах отопления небольших коттеджей или организации горячего водоснабжения в летний период в загородном доме или на даче. Оправдан солнечный коллектор для бассейна в качестве устройства для подогрева воды.

Объясняется это относительно невысоким КПД таких установок, который может значительно уменьшаться в пасмурные дни.

Поэтому для оптимизации расходов на отопление частного дома лучше всего использовать коллекторы совместно с традиционным оборудованием, которое изначально может быть рассчитано для этого, либо имеет возможности для переоборудования или согласования параллельного функционирования двух систем теплоснабжения.

Также стоит отметить, что, кроме регулярного обслуживания и очистки поверхности коллекторов от грязи и мусора, некоторые из них не предназначены для работы при низких температурах, поэтому перед началом зимы их нужно законсервировать, предварительно слив из системы теплоноситель.

Основные разновидности солнечных коллекторов

Солнечный коллектор представляет собой устройство, главной функцией которого является превращение поглощенной солнечной энергии в тепловую с целью ее дальнейшего использования для нагрева теплоносителя в системах отопления, в том числе и в «теплых полах» и ГВС дома.

КПД коллектора напрямую зависит от двух факторов: типа устройства и его площади, поэтому нередко для его монтажа выбирается крыша здания.

Солнечные коллекторы условно можно классифицировать, используя разные критерии. Прежде всего, они делятся по типу теплоносителя на:

  • водяные (жидкостные);
  • воздушные.

По уровню предельных температур коллекторы бывают:

  • низкотемпературными – предел до 50°C, средний показатель 35-45 °C;
  • среднетемпературными до 80°C;
  • высокотемпературными – более 80°C.

Последние чаще всего являются промышленными образцами, сделать их своими руками не представляется возможным.

Конструктивно солнечные нагреватели воды могут быть:

  • плоскими, которые могут быть как воздушными, так и жидкостными;
  • вакуумными, использующими в качестве теплоносителя воду или иной вид жидкости;
  • трубчатыми – бывают и жидкостными, и воздушными;
  • термосифонными, или так называемыми накопительными интегрированными коллекторами, главным отличием которых является способность не только нагревания жидкости, но и поддержания ее температуры определенное время.

Последний вариант является самым простым как по устройству, так и по сложности изготовления и представляет собой несколько теплоизолированных емкостей с водой, а нагрев жидкости происходит через стеклянные крышки баков.

Данный тип коллекторов можно считать и самым простым в обслуживании, так как для того, чтобы он работал, необходимо лишь периодически очищать крышку емкости, но использовать его в холодное время года невозможно.

Плоские воздушные коллекторы тоже довольно просты и имеют вид специальной панели в виде герметичной коробки с теплоприемником с подключенными воздуховодами, по которым движется и нагревается воздух.

Для повышения эффективности их работы требуется увеличение их площади, например, за счет использования нескольких панелей в одной системе, а также использование вентилятора.

Виды солнечных батарей

Солнечная панель состоит из компонентов, и они могут быть разными:

  • монокристаллическими;
  • поликристаллическими;
  • пленочными.

В первом случае один фотоэлемент – это один кристалл кремния. Данные батареи имеют наибольший КПД (до 25%), но они являются очень дорогими. Пластины насыщенного синего цвета, а их края немного скругленные.

Поликристаллические фотоэлементы объединяют несколько кристаллов кремния. Они широко распространены, их КПД колеблется в районе 20-23%. Структура неоднородна, и они хуже поглощают солнечный свет, нежели монокристаллические панели. По стоимости они более доступны.

Тонкопленочные (аморфные) фотоэлементы представляют собой напыление полупроводника на подложку. Основное преимущество в том, что их можно расположить буквально на любой поверхности, они гибкие. Недостаток – небольшая производительность.

По техническому принципу электрификацию солнечными элементами делят на:

  • открытые системы;
  • закрытые системы (автономные);
  • комбинированные.

Открытой система называется, когда солнечная панель подключена к общей электросети. В таком случае необходимость приобретения аккумулятора и контролера отпадает. Солнечные батареи подсоединяются к общей сети с помощью инвертора. Если потребляемая бытовыми приборами мощность не превышает ту, которую производят панели, то из общей электросети ток не берется. В случае, когда вы включили приборы повышенного энергопотребления, и батареи не могут их обеспечить током, электричество берется из общей сети. Особенностью является то, что если тока не будет в основной сети, то батареи работать не станут.

С автономными системами все понятно: они замкнутые и не требуют внешней сети. Энергия накапливается в аккумуляторе и расходуется по мере необходимости.

Комбинированные сети не получили широкого распространения, так как они дороги. Сложная конструкция объединяет тип открытой и закрытой системы. При излишке электроэнергии, вырабатываемой батареями, ее можно перенаправить в общую сеть.

Исследование Солнца

Космический зонд возле Солнца. Иллюстрация: NASA / Johns Hopkins APL / Steve Gribben

Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.

Сколько служат солнечные батареи?

Срок службы солнечных батарей

Производители часто указывают срок эксплуатации – 20-30 лет (в среднем -25 лет). На протяжении указанного периода устройство может работать без потери мощности, сбоев. Однако это не значит, что по окончании данного срока модули перестанут функционировать. Это заблуждение, т. к. солнечные батареи могут служить намного дольше (до 60 и более лет, как первая из запущенных в эксплуатацию конструкций). Только в данном случае будет постепенно снижаться производительность. Но скорость развития этого процесса низкая. Так, за 10 лет батареи могут потерять не более 10% мощности.

При регулярной эксплуатации, максимальной нагрузке модули быстрее теряют свойства. Чтобы остановить этот процесс, а также увеличить срок службы устройства, рекомендуется придерживаться рекомендаций:

  • обеспечение защиты фотоэлементов: необходимо снизить вероятность механического повреждения, солнечные батареи нужно устанавливать на участках, где риск падения деревьев нулевой, а также уровень воздействия ветровой нагрузки умеренный (что позволит исключить срыв ветром);
  • установка на открытой местности ветрозаградительных конструкций;
  • выполнение обслуживания, своевременная очистка модуля от сора.

В продаже есть также готовые комплекты – устанавливаются преимущественно для энергообеспечения частного жилья. Они состоят из батарей, силовой электроники. Длительность эксплуатации каждого из элементов, узлов разная. Так, батареи могут прослужить 2-15 лет, силовая электроника – до 20 лет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector