Усеченный конус: формула объема, площади поверхностей и другое
Содержание:
- Развертка (выкройка) конуса
- Калькуляторы расчета размеров развертки конуса
- Как построить развертку поверхности прямого усеченного конуса
- Развертка наклонного конуса
- Изготовление конуса без циркуля
- Объем пирамиды
- Видео гибки конусной обечайки
- Техника папье-маше
- Вычисление объема тела с помощью интеграла
- Презентация на тему: » Конус Понятие конуса Понятие конуса Площадь поверхности конуса Площадь поверхности конуса Усечённый конус Усечённый конус.» — Транскрипт:
- Инструкция изготовления простого конуса
Развертка (выкройка) конуса
- Следующий уникальный калькулятор служит для перевода экзотических единиц длины в…
- Следующий онлайн калькулятор о фунтах. Ранее он был очень популярен,…
- Следующий онлайн калькулятор может вычислить уровень жидкости в цилиндрической таре…
- Следующий онлайн калькулятор переводит температуры между разными шкалами. Помните калькулятор…
- Следующий калькулятор интересен тем, что он переводит древние российские денежные…
- Следующий калькулятор будет очень полезен тем, кто решил купить или…
- Следующий калькулятор работает очень просто, вам нужно ввести всего одно…
- Следующий онлайн калькулятор считает рост человека благодаря русской системе мер…
- Следующий онлайн калькулятор может вычислить габариты экрана телевизоров, компьютеров, проекторов,…
- Перед вами 2 калькулятора: один поможет вам подобрать формат снимков…
- Следующие 2 калькуляторы переводят заданное число плиток в квадратные метры…
- Перед вами 2 онлайн-калькулятора. Они переводят меры площади из метрической…
- Следующий необычный калькулятор переводит меры длины из русской системы в…
- Перед вами 2 калькулятора, которые предназначены для перевода мер длины…
- Следующий простенький калькулятор переводит введенную вами toC из кельвинов в…
- Следующий калькулятор предназначен для перевода кг в фунты. Также есть…
- Следующий онлайн калькулятор переводит калибр древних артиллерийских орудий из фунтов…
- Давайте вспомним калькулятор, который переводит градусы Цельсия в градусы Фаренгейта:…
- Как вы уже могли заметить на нашем сайте есть несколько…
- Следующий уникальный калькулятор переводит градусы Цельсия в градусы Фаренгейта. Наверное,…
- Следующий калькулятор умеет переводить значение угла, которое задано в градусах,…
- Следующий калькулятор делает перевод единиц измерения углов из градусов, минут,…
- Следующий калькулятор делает расчет объема сегмента цилиндра. Давайте посмотрим каким…
- Следующий онлайн-калькулятор считает объем жидкости в бочке, которая имеет цилиндрическую…
- Следующий калькулятор служит для детального подсчета суммарной работы аппарата. Вам…
- Перед вами отличный помощник для IT специалистов. С помощью данного…
- Следующий калькулятор переводит числа, записанные римскими цифрами в простые десятичные…
- Следующий калькулятор переводит скорость из м/с в км/час. Часто при…
- Начнем с истории. В 17 веке итальянским ученым Торричелли было…
- Следующий онлайн-калькулятор рассчитывает параметры горловины для цилиндрического бочки. Все работает…
hostciti.net
Калькуляторы расчета размеров развертки конуса
Несколько слов о рассчитываемых параметрах
Понять принцип расчета будет несложно, разобравшись со следующей схемой:
Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты и построение становятся даже проще.
Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.
Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.
Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L
Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.
Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:
Как построить развертку поверхности прямого усеченного конуса
Делим основание конуса на 12 равных частей (вписываем правильную пирамиду). Данные элементы построения уже готовы из чертежа «Сечение конуса плоскостью частного положения».
Строим развертку боковой поверхности конуса, которая представляет собой круговой сектор. Центр его радиуса принимается за вершину конуса, а величина радиуса кругового сектора конуса равна длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса. На дугу сектора переносим 12 хорд, которые определят ее длину, а также угол кругового сектора.
К центральной точке дуги сектора боковой развертки усеченного конуса пристраиваем основание конуса. Его основание проецируется в натуральную величину на горизонтальную плоскость проекции.
На развертке конуса к его основанию пристраиваем натуральную величину сечения.
Две крайние образующие конуса, которые формируют его основной контур, проецируются на фронтальную плоскость проекции в натуральную величину, поэтому их можно сразу переносить на развертку боковой поверхности конуса. Так как часть его срезана фронтально проецирующей плоскостью, то перенесем на развертку конуса только крайнюю правую усеченную образующую. Остальные усеченные образующие конуса проецируются на фронтальную плоскость проекций с искажением. Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.
Сам принцип нахождения натуральных величин образующих усеченного конуса сводится к тому, что проводят из точек пересечения образующих с плоскостью горизонтальную прямую до крайней правой (левой) образующей и на ней отмеряют натуральные их величины. Все действия проводят на фронтальной плоскости проекции.
На каждой образующей, лежащей на развертке боковой поверхности конуса, откладываем действительные длины усеченных образующих. Полученные точки соединяем плавной кривой линией команда Сплайн в Автокад.
Мы выполнили задачу начертательной геометрии на построение развертки усеченного конуса, но чтобы не возникло проблем во время ее защиты (когда я обучался, каждая курсовая по начертательной геометрии защищалась), еще раз рассмотрим принцип вращения для нахождения натуральной величины усеченной образующей конуса.
«Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.» Когда мы вращаем образующую прямого конуса до положения параллельного фронтальной плоскости проекции, то ее траектория описывает дугу на горизонтальной плоскости проекции, а на фронтальной прямую!
Вы можете не проводить линии связи с горизонтальной плоскости проекции на фронтальную, ведь очевидно, что точка будет лежать на крайней основной образующей контура конуса для каждой образующей при нахождении ее натуральной величины. Поэтому сам принцип вращения по нахождению натуральной величины образующих конуса сводится к проведению из точек усеченных образующих горизонтальной прямой до основной образующей контура конуса.
В видеоуроке очень наглядно и подробно показан принцип построения развертки прямого усеченного конуса.
Развертка наклонного конуса
Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).
Алгоритм
- Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
- Определяем натуральные величины ребер пирамиды, используя вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5. - Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S16, S65, S54, S43, S32, S21. Построение каждого треугольника выполняется по трем сторонам. Например, у △S16 длина S1=S’’1’’, S6=S’’6’’1, 16=1’6’.
Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.
Перенос линии с поверхности конуса на развертку
Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.
Алгоритм
- Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
- Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
- Находим положение точек A, B, C на соответствующих им ребрах пирамиды, откладывая на развертке отрезки SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
- Соединяем точки A, B, Cплавной линией.
Изготовление конуса без циркуля
Бывает так, что циркуля нет или пользоваться им не хочется, а изготовить правильный конус нужно срочно. Megamaster.info расскажет вам, как сделать конус из бумаги без применения циркуля.
Для работы вам потребуется:
- бумага;
- ножницы;
- скотч.
Приступаем к работе:
- Из бумаги нам нужно вырезать треугольник. Фигура должна иметь длинный низ, и идентичные короткие боковины. Получается так называемая развёртка конуса.
- Складываем углы бумаги так, чтобы край заготовки располагался посередине. Второй угол также сворачиваем. Оборачиваем эту часть фигуры вокруг предыдущего угла. У вас уже должно получиться что-то похожее на конус.
- У изделия ну;но выровнять края. Аккуратно и тщательно затягиваем углы. Делаем это так, чтобы фигура не распалась.
- Если вы заметили, что у изделия торчат лишние участки бумаги, это значит, что изначально треугольник был сделан неправильно. Ситуацию можно исправить переделыванием поделки, отрезанием лишних участков с помощью ножниц или простым загибанием остатков внутрь изделия.
- Осталось закрепить фигуру, чтобы она не потеряла свою форму. Возьмите скотч и проклейте заготовку изнутри.
Конус без использования циркуля готов.
Объем пирамиды
Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.
Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.
Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.
Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что
Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому
Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:
Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.
Объем треугольных пирамид рассчитывается по выведенной нами формуле:
Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.
Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:
Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?
Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:
Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?
Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.
Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.
Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.
Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:
Далее используем основное свойство пропорции:
Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:
Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.
Сначала вычислим площади оснований:
Видео гибки конусной обечайки
После сборки проверяется сварочный зазор и выполняются сварочные прихватки (рис.21). Параметры прихваток приведены в таблице 2. Заходные и выводные планки применяются для обеспечения качественного сварного шва по торцам обечайки.
При сборке обечаек используются роликовые стенды (рис.22) и кантователи. Сварку кольцевых и продольных швов обечаек производят ручным способом, механизированным способом или с применением сварочных роботов. Для ликвидации остаточных напряжений в сварных швах обечайки подвергают термообработке в шахтных печах. После сварки производится калибровка обечайки на вальцах — прокатка ее в несколько заходов. При окончательном контроле изготовленных обечаек проверяют их геометрические размеры, отсутствие деформаций и поверхностных дефектов детали.
Установлен сертификат профессионализма, соответствующий занятию промышленного кипятильника, профессиональной семьи тяжелой промышленности и металлических конструкций, который будет иметь официальный характер и действительность на всей территории страны.
Сертификат профессионализма. Аккредитация учебного контракта. Только переходное положение. Адаптация к национальному учебному и профессиональному плану внедрения. Министр труда и социальных дел настоящим уполномочен издавать такие положения, которые могут потребоваться для осуществления этого Королевского указ.
Более подробно об изготовлении отдельных видов обечаек, читайте в разделах «Вентиляция», «Водосток» и «Для гибки металла».
Вальцовка обечаек – важнейший технологический процесс, без которого нельзя даже представить производство цилиндрических деталей. Рассмотрим более подробно его особенности, технологию и используемый инструмент.
Этот Королевский указ вступает в силу на следующий день после его опубликования в Официальном государственном бюллетене. В Мадриде 24 января. Министр труда и социальных дел. Профессиональный профиль профессии. Для строительства различных элементов используются режущие и формовочные машины, а также электросварочное оборудование, а также организует рабочее оборудование для получения продуктов в условиях безопасности и требуемых качественных характеристик. Построить металлические конструкции.
Построить наборы цилиндрических каналов. Компетентность 1: сборка металлоконструкций. Компетентность 2: построение наборов цилиндрических трубопроводов. Компетентность 3: построение конусов и бункеров. Наблюдение при формовании в горячем состоянии не превышает предельную температуру молекулярной структуры материала.
Техника папье-маше
Этот раздел также научит, как сделать конус из бумаги для елки
Большой или маленький вам нужен размер, в данном случае неважно. Заготовка получается прочной и твердой даже без дополнительного каркаса. Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера
Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера.
Для работы этим методом подойдет любая бумага, даже газетная или от старых журналов, однако, потребуется основа-заготовка. Можно воспользоваться пластиковым конусом от детского конструктора (исходная деталь не испортится и вернется на место), пластилином, гипсом, пенопластом. По одному шаблону вы сможете сделать много заготовок из папье-маше. Действуйте так:
- Нарежьте или нарвите газеты на мелкие элементы.
- Оберните подготовленный шаблон полиэтиленовой пленкой и обмажьте ПВА.
- На невысохший клей нанесите слой бумажных кусочков.
- Просушите первый слой и после нанесите второй по той же технологии.
- Работайте так до необходимой толщины заготовки.
- Разрежьте получившийся панцирь и извлеките исходную деталь.
- Установите стержень-каркас, если нужно.
- Нанесите еще несколько слоев для скрепления половинок.
Все готово.
Вы узнали, как сделать конус из бумаги для елки. Начинайте с изготовления основы, а затем приступайте к ее декорированию.
Для новогоднего оформления квартиры очень хорошо подходят маленькие ёлочки из подручных материалов. Один из главных плюсов таких ёлочек – простота изготовления и широкое поле для фантазии при их украшении. Кроме того, таких ёлочек можно сделать сразу много – разных по виду и украшению и расставить по всей квартире, таким образом, оригинально украсив её. Проще всего сделать ёлочку-конус из бумаги. На специализированных сайтах есть множество идей украшения таких ёлок, к которым Вы всегда сможете добавить свою авторскую выдумку. При всём разнообразии моделей, основа у всех ёлочек одна – конус из бумаги или картона.
Вычисление объема тела с помощью интеграла
Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:
Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок . Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х, х1, х2…, хn, причем точке х будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:
Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:
Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:
Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:
В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:
Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.
Итак, для вычисления объема тела необходимо:
1) выбрать в пространстве какую-то удобную ось координат Ох;
2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;
3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;
4) выполнить интегрирование.
Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.
Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.
Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:
Презентация на тему: » Конус Понятие конуса Понятие конуса Площадь поверхности конуса Площадь поверхности конуса Усечённый конус Усечённый конус.» — Транскрипт:
1
Конус Понятие конуса Понятие конуса Площадь поверхности конуса Площадь поверхности конуса Усечённый конус Усечённый конус
2
Понятие конуса Рассмотрим окружность L с центром О и прямую ОР, перпендикулярную к плоскости этой поверхности. Через точку Р и каждую точку окружности проведём прямую. Поверхность, образованная этими прямыми, называется конической поверхностью, а сами прямые – образующими конической поверхности. L О Р
3
Точка Р называется вершиной, а прямая ОР – осью конической поверхности. Понятие конуса L О Р вершина ось конической поверхности
4
Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Конус О L
5
Круг называется основанием конуса, вершина конической поверхности – вершиной конуса, отрезки образующих, заключённые между вершиной и основанием, — образующими конуса, а образованная ими часть конической поверхности – боковой поверхностью конуса. Конус О L
6
Конус О L Р ось конуса вершина конуса образующие конуса боковая поверхность конуса основание конуса
7
Ось конической поверхности называется осью конуса, а её отрезок, заключённый между вершиной и основанием, — высотой конуса.Конус О L Р ось конуса высота конуса
8
Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. Получение конуса
9
Если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник, основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Это сечение называется осевым. Сечение конуса О Р
10
Если секущая плоскость перпендикулярна к оси ОР конуса, то сечение конуса представляет собой круг с центром О 1, расположенным на оси конуса. Радиус r 1 этого круга равен, где r – радиус основания конуса. Сечение конуса Р О М r О1О1 М1М1 r1r1
11
Проводя различные сечения одного и того же кругового конуса, причём любого, можно получить эллипс, параболу и гиперболу. При надлежащем наклоне секущей плоскости удаётся получить все типы конических сечений. Если считать, что конус не заканчивается в вершине, а простирается за неё, тогда у некоторых сечений образуются две ветви. Сечение конуса
12
За площадь боковой поверхности конуса принимается площадь её развёртки. Площадь боковой поверхности конуса Развёртка боковой поверхности конуса: А В Р А L А В Р L r
13
Выразим через L и r. Так как длина дуги АВА равна, то, откуда Площадь боковой поверхности конуса А В Р А L Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
14
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. Площадь полной поверхности конуса А В Р L r S кон = r 2 + rL S кон = r(r + L)
15
Возьмём произвольный конус и проведём секущую плоскость, перпендикулярную к его оси. Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей (верхняя) представляет собой конус, а другая называется усечённым конусом. Усечённый конус Р О О1О1 конус усечённый конус
16
Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усечённого конуса, а отрезок, соединяющий их центры, — высотой усечённого конуса. Усечённый конус О1О1 r1r1 r О основание высота
17
Часть конической поверхности, ограничивающая усечённый конус, называется его боковой поверхностью, а отрезки образующих конической поверхности, заключённые между основаниями, называются образующими усечённого конуса. Усечённый конус О1О1 r1r1 r О боковая поверхность образующие
18
Усечённый конус может быть получен вращением прямоугольной трапеции вокруг её боковой стороны, перпендикулярной к основаниям. Получение усечённого конуса A B C D Усечённый конус получен вращением прямоугольной трапеции ABCD вокруг стороны CD.
19
Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую: где r и r 1 – радиусы оснований, L – образующая усечённого конуса. Площадь боковой поверхности усечённого конуса О1О1 r1r1 r О L
Инструкция изготовления простого конуса
Сделать конус в основе которого лежит бумага очень просто. На всю работу уходит до пяти минут. Достаточно перед работой изготовить верный чертеж и свернуть материал правильным образом.
Простой конус схема
Для первой работы потребуется:
- лист А4;
- циркуль с вставленным карандашом;
- длинная линейка
- ножницы;
- степлер или клей.
Как сделать конус из бумаги пошагово:
- Берем бумагу. Определяем центр листа. Отмечаем место.
- В отмеченную точку ставим острие циркуля и чертим круг. Вырезаем нарисованную фигуру. На полученной заготовке от края к уже установленному центру проводим линию. Делаем по этой линии разрез.
- Из сделанного круга с разрезом, сворачиваем воронку. Скрепляем края фигуры с помощью степлера или клея.
Конус готов. Готовую фигуру можно использовать для разнообразных поделок. А если добавить к нашей фигуре шар, то получится поделка для выставки на геометрическую тематику.